- #1
physicus
- 55
- 3
Homework Statement
We consider global AdS given by the coordinates [itex](\rho,\tau, \Omega_i), i=1,\ldots,d[/itex] and the metric
[itex] ds^2=L^2(-cosh^2\,\rho\,d\tau^2+d\rho^2+sinh^2\,\rho\,d \Omega_i{}^2)[/itex]
Find the trajectory [itex]\tau(\rho)[/itex], radially-directed geodesics, strating from [itex]\rho=\rho_0[/itex] with proper time [itex]\tau(\rho_0)[/itex].
Homework Equations
Geodesic equation: [itex]\frac{d^2x^{\mu}}{d \lambda^2}+\Gamma^\mu_{\nu \alpha}\frac{dx^\nu}{d \lambda}\frac{dx^\alpha}{d \lambda}=0[/itex]
The Attempt at a Solution
I calculated the Christoffel symbols to obtain the following non-zero components:
[itex]\Gamma^\rho_{\tau\tau}=sinh\,\rho[/itex]
[itex]\Gamma^\phi_{ii}=-cosh\,\rho[/itex]
[itex]\Gamma^\tau_{\rho\tau}=\Gamma^\tau_{\tau\rho}=tanh\,\rho[/itex]
[itex]\Gamma^i_{\rho i}= \Gamma^i_{i\rho}=coth\,\rho[/itex]
Using the geodesic equation this yields:
[itex]\frac{d^2\rho}{d\lambda^2}+sinh\,\rho\,\left(\frac{d\tau}{d\lambda}\right)^2-\sum_i cosh\,\rho\,\left(\frac{d\Omega_i}{d\lambda}\right)^2=0[/itex]
[itex]\frac{d^2\tau}{d\lambda^2}+2tanh\,\rho\,\frac{d \rho}{d\lambda}\frac{d\tau}{d\lambda}=0[/itex]
[itex]\frac{d^2\Omega_i}{d\lambda^2}+2coth\,\rho\,\sum_j \frac{d \rho}{d\lambda}\frac{d\Omega_j}{d\lambda}=0[/itex]
We are looking for radially directed geodesics, i.e. try if there are solutions with [itex]\frac{d \Omega_i}{d\lambda}=0[/itex]. Since this ansatz leads to [itex]\frac{d^2 \Omega_i}{d\lambda^2}=0[/itex] it is consistent with the above equations. Therefore, we can simplify:
[itex]\frac{d^2 \rho}{d\lambda^2}+sinh\,\rho\,\left(\frac{d\tau}{d\lambda}\right)^2=0[/itex] (*)
[itex]\frac{d^2\tau}{d\lambda^2}+2tanh\,\rho\,\frac{d \rho}{d\lambda}\frac{d\tau}{d\lambda}=0[/itex]
Since we look for massless geodesics we require
[itex]g_{\mu\nu}\frac{dx^\mu}{ \lambda}\frac{dx^\nu}{d \lambda}=0[/itex]
[itex]\Rightarrow -cosh\,\rho\,\left(\frac{d\tau}{d\lambda}\right)^2+\left(\frac{d\rho}{d\lambda}\right)^2+\sum_i sinh\,\rho\,\left(\frac{d\Omega_i}{d\lambda}\right)^2=0[/itex]
[itex]\Rightarrow -cosh\,\rho\,\left(\frac{d\tau}{d\lambda}\right)^2+\left(\frac{d\rho}{d\lambda}\right)^2 = 0[/itex]
We can use this to simplify (*) to get
[itex] \frac{d^2\rho}{d\lambda^2}+tanh\,\rho\,\left(\frac{d\rho}{d\lambda}\right)^2=0[/itex]
However, I still don't see a solution. Does anyone have an idea?
Cheers, physicus