Solving Rotational Motion Homework: Mass m, Length r, Centripetal Force Fc

VT=angular velocity x radiusc) Looks good!In summary, the rock of mass 2kg tied to a string of length 4m is rotating at a constant rate and subject to a centripetal force of 32N. The centripetal acceleration is 16 m/s2, the angular velocity is 4 rad/s, and the angular momentum is 64 kg•m2/s.
  • #1
dixonewman
2
0

Homework Statement


A rock of mass m=2kg is tied to a string of length r=4m is rotating at a constant rate and subject to a centripetal force Fc=32N.

Find the:
a)Centripetal acceleration

b)Angular velocity

c)Angular momentum


Homework Equations



a) Ac=V2T/R (Fc=V2T/R; so, V2T=Fc x R/m?)

b) VT=angular velocity x radius

c) l = mvTr

The Attempt at a Solution



a) 32 x 4/2 = 64[m2/s]

b) V2T = 64, so VT = 8; 8/4 = 2 [rad/s]

c) 2 x 8 x 4= 64[kg x m2/s]

I know this is simple stuff, but I'm new to physics, and just wanted to double-check that I'm getting my formulas right. Thanks everyone!
 
Physics news on Phys.org
  • #2
dixonewman said:
a) 32 x 4/2 = 64[m2/s]
Use Newton's 2nd law here.
[tex]F_{centripetal}=ma_{centripetal}[/tex]

dixonewman said:
b) V2T = 64, so VT = 8; 8/4 = 2 [rad/s]

This is correct. You could have also used [itex]F=m \omega^2r[/itex] if you wanted.

dixonewman said:
c) 2 x 8 x 4= 64[kg x m2/s]
[/QUOTE]

This looks good as well.

I know this is simple stuff, but I'm new to physics, and just wanted to double-check that I'm getting my formulas right. Thanks everyone![/QUOTE]
 
  • #3
Wait, it looks like I may have jumbled up my formulas...

If V2T=Fc x R/m (is this formula correct?), if so, then V2T = 64;

Ac=V2T/R so 64/4 = 16 [m/s2]

Am I still missing the mark?
 
Last edited:
  • #4
dixonewman said:
Wait, it looks like I may have jumbled up my formulas...

If V2T=Fc x R/m (is this formula correct?), if so, then V2T = 64;

Ac=V2T/R so 64/4 = 16 [m/s2]

Am I still missing the mark?

16ms-2 should be correct
 

FAQ: Solving Rotational Motion Homework: Mass m, Length r, Centripetal Force Fc

What is rotational motion?

Rotational motion is the movement of an object around an axis or center point. This type of motion is often seen in objects such as wheels, gears, and planets.

What is the relationship between mass, length, and centripetal force in rotational motion?

In rotational motion, the mass and length of an object affect the amount of centripetal force required to keep it moving in a circular path. The greater the mass or length, the greater the centripetal force needed.

How do you calculate centripetal force in rotational motion?

The formula for calculating centripetal force is Fc = (m * v^2)/r, where m is the mass of the object, v is the velocity, and r is the radius of the circular path.

Can you provide an example of rotational motion?

An example of rotational motion is the Earth's rotation around its axis. The Earth's mass and distance from the axis determine the amount of centripetal force required to keep it rotating at a constant speed.

How does rotational motion differ from linear motion?

Linear motion is the movement of an object in a straight line, while rotational motion involves movement around an axis. In linear motion, the force applied is in the same direction as the displacement, while in rotational motion, the force is perpendicular to the displacement.

Similar threads

Back
Top