- #1
Hamiltonian
- 296
- 193
The Schrodinger equation:
$$-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} + \hat V\psi = E\psi$$
$$\frac{1}{2m}[\hat p^2 + 2m\hat V ]\psi = E\psi$$
The ladder operators:
$$\hat a_\pm = \frac{1}{\sqrt{2m}}[\hat p \pm i\sqrt{2m\hat V}]$$
$$\hat a_\pm \hat a_\mp = \frac{1}{2m}[\hat p^2 + (2m\hat V) \mp i\sqrt{2m}[\hat p,\hat V ^{1/2}]]$$
The Hamiltonian:
$$\hat H = \frac{1}{2m}[\hat p^2 +2m\hat V]$$
The Hamiltonian in terms of the ladder operator:
$$\hat H = \hat a_\pm \hat a_\mp \pm {\frac{i}{\sqrt{2m}} [\hat p, \hat V^{1/2}]} $$
finding ##\hat H(\hat a_- \psi)##:
$$\hat H(\hat a_- \psi) = [\hat a_-\hat a_+ \frac{i}{\sqrt{2m}}[\hat p, \hat V^{1/2}]](\hat a_- \psi)$$
$$\hat H(\hat a_- \psi) = \hat a_-[E - \frac{2i}{\sqrt{2m}}[\hat p, \hat V^{1/2}]](\psi)$$
If we apply the lowering operator repeatedly we will eventually reach a state with energy less than zero, which do not exist.
$$\hat a_- \psi_0 = 0$$
$$[\hat p - i(2m\hat V)^{1/2}]\psi_0 = 0$$
$$[-i\hbar\frac{d}{dx} -i \sqrt{2mV(x)}]\psi_0 = 0$$
$$\psi_0(x) = -\int {\frac{\sqrt{2mV(x)}}{\hbar}dx}$$
$$\psi_n(x) = A_n(\hat a_+)^n \psi_0(x)$$
where ##\psi_0## is the ground state wave function solution.
Is this a correct way to give a general solution of the Schrodinger equation for any potential?
$$-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} + \hat V\psi = E\psi$$
$$\frac{1}{2m}[\hat p^2 + 2m\hat V ]\psi = E\psi$$
The ladder operators:
$$\hat a_\pm = \frac{1}{\sqrt{2m}}[\hat p \pm i\sqrt{2m\hat V}]$$
$$\hat a_\pm \hat a_\mp = \frac{1}{2m}[\hat p^2 + (2m\hat V) \mp i\sqrt{2m}[\hat p,\hat V ^{1/2}]]$$
The Hamiltonian:
$$\hat H = \frac{1}{2m}[\hat p^2 +2m\hat V]$$
The Hamiltonian in terms of the ladder operator:
$$\hat H = \hat a_\pm \hat a_\mp \pm {\frac{i}{\sqrt{2m}} [\hat p, \hat V^{1/2}]} $$
finding ##\hat H(\hat a_- \psi)##:
$$\hat H(\hat a_- \psi) = [\hat a_-\hat a_+ \frac{i}{\sqrt{2m}}[\hat p, \hat V^{1/2}]](\hat a_- \psi)$$
$$\hat H(\hat a_- \psi) = \hat a_-[E - \frac{2i}{\sqrt{2m}}[\hat p, \hat V^{1/2}]](\psi)$$
If we apply the lowering operator repeatedly we will eventually reach a state with energy less than zero, which do not exist.
$$\hat a_- \psi_0 = 0$$
$$[\hat p - i(2m\hat V)^{1/2}]\psi_0 = 0$$
$$[-i\hbar\frac{d}{dx} -i \sqrt{2mV(x)}]\psi_0 = 0$$
$$\psi_0(x) = -\int {\frac{\sqrt{2mV(x)}}{\hbar}dx}$$
$$\psi_n(x) = A_n(\hat a_+)^n \psi_0(x)$$
where ##\psi_0## is the ground state wave function solution.
Is this a correct way to give a general solution of the Schrodinger equation for any potential?
Last edited: