- #1
oddiseas
- 73
- 0
Homework Statement
At t=0 a particle is described by the eigenfunction:
[tex]\Psi[/tex]= i[tex] M [/tex] [tex]e^{\frac{-x}{2}}[/tex] x [tex]\geq 0[/tex]
0 if x [tex]\prec 0[/tex]
a) Write an expression for the corresponding wave function
b) find the epression for the eigenfunctions.
Homework Equations
The Attempt at a Solution
Does the wavefunction always approach zero as x approaches infinity?
if so this gives me:
f(x)=Be^ikx+Ce^-ikx
f(0)=Aie^(-x/2)
f([tex]\infty[/tex])=0 then B=0
f(x)=Aie^(-x/2)e^-ikx
f(x)=Aie^-x(ik+1/2)
then normalising this solution gives A=[tex]\sqrt{2}[/tex]
f[tex]_{n}[/tex](x)=[tex]\sqrt{2}[/tex]ie^-x(ik+1/2)
then normalising the initial condition give M=1.
[tex]\Psi[/tex]= [tex]\sum[/tex] A*[tex]\sqrt{2}[/tex]ie^-x(ik+1/2)*g(t)
This is as far as i could get;