- #1
merrypark3
- 30
- 0
Hello.
From Schwartz QFT BOOK,
How could Eqn 5.26 can be Eqn 5.27?
[itex]d \Pi_{LIPS}=(2 \pi) ^{4} \delta^{4}(\Sigma p) \frac{d^{3} p_{3}}{(2 \pi) ^{3}} \frac{1}{2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3}} \frac{1}{2 E_{4}} [/itex] Eqn(5.26)
[itex]d \Pi_{LIPS}=\frac{1}{16 \pi ^{2}} dΩ ∫ d p_{f} \frac{{p_{f}}^2}{E_{3}} \frac{1}{E_{4}} \delta ( E_{3} + E_{4} - E_{CM}) [/itex] Eqn(5.27)
From Schwartz QFT BOOK,
How could Eqn 5.26 can be Eqn 5.27?
[itex]d \Pi_{LIPS}=(2 \pi) ^{4} \delta^{4}(\Sigma p) \frac{d^{3} p_{3}}{(2 \pi) ^{3}} \frac{1}{2 E_{3}} \frac{d^{3} p_{4}}{(2 \pi)^{3}} \frac{1}{2 E_{4}} [/itex] Eqn(5.26)
[itex]d \Pi_{LIPS}=\frac{1}{16 \pi ^{2}} dΩ ∫ d p_{f} \frac{{p_{f}}^2}{E_{3}} \frac{1}{E_{4}} \delta ( E_{3} + E_{4} - E_{CM}) [/itex] Eqn(5.27)