- #1
Aero6
- 7
- 0
Hi I've been working on this problem repeatedly and thought I understood how to solve separable equations problems but I keep getting the wrong answer.
y' = (1-2x)y^2
Here's what I got for the problem:
y'y^2 = (1-2x)
[tex]\int(1\y^2) dy = \int(1-2x)dx[/tex]
ln | y^2| = x-x^2 + C
e^ln|y^2| =e^ x-x^2 +C , e^C = C
y^2= + e^x-x^2 +C or y^2 = -e^x-x^2 +C
y=[tex]\sqrt{}+ or - Ce^x-x^2[/tex]
-1/6=+ or - [tex]\sqrt{}Ce^ 0-0^2[/tex]
(-1\6)^2 = + or -([tex]\sqrt{}C[/tex])^2
C = 1\36
y=+ or - [tex]\sqrt{}1\36 e^x-x^2[/tex]
Also, I'm not sure what to do when the problem tells you to determine the interval in which the solution is valid.
Thanks.
y' = (1-2x)y^2
Here's what I got for the problem:
y'y^2 = (1-2x)
[tex]\int(1\y^2) dy = \int(1-2x)dx[/tex]
ln | y^2| = x-x^2 + C
e^ln|y^2| =e^ x-x^2 +C , e^C = C
y^2= + e^x-x^2 +C or y^2 = -e^x-x^2 +C
y=[tex]\sqrt{}+ or - Ce^x-x^2[/tex]
-1/6=+ or - [tex]\sqrt{}Ce^ 0-0^2[/tex]
(-1\6)^2 = + or -([tex]\sqrt{}C[/tex])^2
C = 1\36
y=+ or - [tex]\sqrt{}1\36 e^x-x^2[/tex]
Also, I'm not sure what to do when the problem tells you to determine the interval in which the solution is valid.
Thanks.