- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Hi MHB,
My nephew, age 9, was asked the following question and he hoped I could solve the problem and then explain the solution to him using only elementary math concepts. My boyfriend has solved it, but he used a formula that he recalled seeing in a textbook by G.H. Hardy, and that involved knowledge of triangular numbers.
So, I don't know how to attack this problem from a 9 year old's perspective. If you happen to know how to simplify the problem, could you please enlighten me? Many thanks in advance.
Problem:
In the sequence of fractions $\dfrac{1}{1},\,\dfrac{2}{1},\,\dfrac{1}{2},\, \dfrac{3}{1},\,\dfrac{2}{2},\,\dfrac{1}{3},\, \dfrac{4}{1},\,\dfrac{3}{2},\,\dfrac{2}{3},\, \dfrac{1}{4},\, \dfrac{5}{1},\, \dfrac{4}{2},\, \dfrac{3}{3},\, \dfrac{2}{4},\,\dfrac{1}{5}\cdots$, fractions equivalent to any given fraction occur many times. For example, fractions equivalent to $\dfrac{1}{2}$ occur for the first two times in positions 3 and 14. In what position is the fifth occurrence of a fraction equivalent to $\dfrac{3}{7}$?
My nephew, age 9, was asked the following question and he hoped I could solve the problem and then explain the solution to him using only elementary math concepts. My boyfriend has solved it, but he used a formula that he recalled seeing in a textbook by G.H. Hardy, and that involved knowledge of triangular numbers.
So, I don't know how to attack this problem from a 9 year old's perspective. If you happen to know how to simplify the problem, could you please enlighten me? Many thanks in advance.
Problem:
In the sequence of fractions $\dfrac{1}{1},\,\dfrac{2}{1},\,\dfrac{1}{2},\, \dfrac{3}{1},\,\dfrac{2}{2},\,\dfrac{1}{3},\, \dfrac{4}{1},\,\dfrac{3}{2},\,\dfrac{2}{3},\, \dfrac{1}{4},\, \dfrac{5}{1},\, \dfrac{4}{2},\, \dfrac{3}{3},\, \dfrac{2}{4},\,\dfrac{1}{5}\cdots$, fractions equivalent to any given fraction occur many times. For example, fractions equivalent to $\dfrac{1}{2}$ occur for the first two times in positions 3 and 14. In what position is the fifth occurrence of a fraction equivalent to $\dfrac{3}{7}$?