Solving $\sin(z) = 2 + 3i$ using complex numbers

  • MHB
  • Thread starter Dustinsfl
  • Start date
  • Tags
    Sin
In summary: So I ended up getting$x = \pm\sqrt{3\pm 3\sqrt{5}}$ and $y = \pm\sqrt{-3\pm 3\sqrt{5}}$Something is wrong I believe.I tested the values and for $x^2-y^2 = 6$Only $x=\sqrt{3+3\sqrt{5}}$ and $y=-\sqrt{-3+3\sqrt{5}}$ worked which when multiplied together equaled negative 6.
  • #1
Dustinsfl
2,281
5
What is the best way to handle $\sin(z) = 2 + 3i$?

Option (1)
$\sin(z) = \sin(x + yi) = \sin(x)\cos(yi) + \sin(yi)\cos(x) = \sin(x)\cosh(y) + i\sinh(y)\cos(x)$
$\sin(x)\cosh(y) = 2$
$\sinh(y)\cos(x) = 3$

Option (2)
$\displaystyle\sin(z) = \frac{e^{zi}-e^{-zi}}{2i} = 2 + 3i$

Which option is better or is there another option?

Also, I am stuck on (1) and (2) anyways.
 
Physics news on Phys.org
  • #2
dwsmith said:
Option (2) $\displaystyle\sin(z) = \frac{e^{zi}-e^{-zi}}{2i} = 2 + 3i$

This is the best option. Write $w=e^{iz}$ and you'll obtain $w^2+(6-4i)w-1=0$ . If $w_1,w_2$ are the solutions of the quadratic equation then, $e^{iz}=w_1,e^{iz}=w_2$ etc.
 
  • #3
$$
\displaystyle
w = \frac{4i + 6 \pm\sqrt{(6 - 4i)^2 + 4}}{2} = 2i + 3 \pm\sqrt{6 - 12i}
$$

What can be done about the radical now?
 
  • #4
dwsmith said:
$$
\displaystyle
w = \frac{4i + 6 \pm\sqrt{(6 - 4i)^2 + 4}}{2} = 2i + 3 \pm\sqrt{6 - 12i}
$$

What can be done about the radical now?

Convert it to polars, then take it to the power of 1/2.
 
  • #5
Prove It said:
Convert it to polars, then take it to the power of 1/2.

So $r = 6\sqrt{5}$. What is $\theta = \tan^{-1}\left(-2\right) =$ ??
 
  • #6
dwsmith said:
So $r = 6\sqrt{5}$. What is $\theta = \tan^{-1}\left(-2\right) =$ ??

It's in the fourth quadrant, so it would be $ - \arctan{(2)}$.
 
  • #7
Prove It said:
It's in the fourth quadrant, so it would be $ - \arctan{(2)}$.

This is horrible with all the decimals.

$$
\displaystyle
w = 2i + 3 \pm\sqrt{6}\sqrt[4]{5}\exp\left(-\frac{i\tan^{-1}(2)}{2}\right)
$$

Should I convert $2i + 3$ to polar?
 
Last edited:
  • #8
dwsmith said:
This is horrible with all the decimals.

$$
\displaystyle
w = 2i + 3 \pm\sqrt{6}\sqrt[4]{5}\exp\left(-\frac{i\tan^{-1}(2)}{2}\right)
$$

Should I convert $2i + 3$ to polar?

No, now you should convert everything to Cartesians. And keep everything exact.
 
  • #9
Prove It said:
No, now you should convert everything to Cartesians. And keep everything exact.

Is the half angle formula going to need to be used here?
 
  • #10
dwsmith said:
Is the half angle formula going to need to be used here?

No. You have $\displaystyle \sqrt{6}\sqrt[4]{5}e^{-\frac{i\arctan{2}}{2}} $, which is a complex number with $ \displaystyle r = \sqrt{6}\sqrt[4]{5}$ and $ \displaystyle \theta = -\frac{\arctan{2}}{2} $. So what would this number be in Cartesians?
 
  • #11
Prove It said:
No. You have $\displaystyle \sqrt{6}\sqrt[4]{5}e^{-\frac{i\arctan{2}}{2}} $, which is a complex number with $ \displaystyle r = \sqrt{6}\sqrt[4]{5}$ and $ \displaystyle \theta = -\frac{\arctan{2}}{2} $. So what would this number be in Cartesians?

So you are saying to leave it in this form:

$\displaystyle\sqrt{6}\sqrt[4]{5}\cos\left(\frac{\arctan(2)}{2}\right) - i\sqrt{6}\sqrt[4]{5}\sin\left(\frac{\arctan(2)}{2}\right)$
 
  • #12
dwsmith said:
So you are saying to leave it in this form:

$\displaystyle\sqrt{6}\sqrt[4]{5}\cos\left(\frac{\arctan(2)}{2}\right) - i\sqrt{6}\sqrt[4]{5}\sin\left(\frac{\arctan(2)}{2}\right)$

Yes. Then perform the addition and subtraction.

On second thought, you probably could simplify these using half angle identities and the Pythagorean Identity, it depends on what's expected of you...

\[ \displaystyle \begin{align*} 1 + \tan^2{\theta} &\equiv \frac{1}{\cos^2{\theta}} \\ \cos^2{\theta} &\equiv \frac{1}{1 + \tan^2{\theta}} \\ \cos{\theta} &\equiv \pm \frac{1}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]

and

\[ \displaystyle \begin{align*} 1 + \frac{1}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \frac{1 + \tan^2{\theta}}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \sin^2{\theta} &\equiv \frac{\tan^2{\theta}}{1 + \tan^2{\theta}} \\ \sin{\theta} &\equiv \pm \frac{\tan{\theta}}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]
 
Last edited:
  • #13
Prove It said:
Yes. Then perform the addition and subtraction.

On second thought, you probably could simplify these using half angle identities and the Pythagorean Identity, it depends on what's expected of you...

\[ \displaystyle \begin{align*} 1 + \tan^2{\theta} &\equiv \frac{1}{\cos^2{\theta}} \\ \cos^2{\theta} &\equiv \frac{1}{1 + \tan^2{\theta}} \\ \cos{\theta} &\equiv \pm \frac{1}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]

and

\[ \displaystyle \begin{align*} 1 + \frac{1}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \frac{1 + \tan^2{\theta}}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \sin^2{\theta} &\equiv \frac{\tan^2{\theta}}{1 + \tan^2{\theta}} \\ \sin{\theta} &\equiv \pm \frac{\tan{\theta}}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]

I know have this mess:

$$
\begin{array}{lll}
\displaystyle e^{iz} & = & \displaystyle 3 + \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 - \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)\\
\displaystyle e^{iz} & = & \displaystyle 3 - \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 + \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)
\end{array}
$$

How do I solve for z?
 
  • #14
dwsmith said:
I know have this mess:

$$
\begin{array}{lll}
\displaystyle e^{iz} & = & \displaystyle 3 + \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 - \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)\\
\displaystyle e^{iz} & = & \displaystyle 3 - \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 + \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)
\end{array}
$$

How do I solve for z?

You could use a Logarithm. Otherwise, convert this complex number to its exponential form (actually that will probably be easier).
 
  • #15
Prove It said:
Convert it to polars, then take it to the power of 1/2.

Not necessary for square roots, $\sqrt{6-12i}=x+iy\Leftrightarrow (x+iy)^2=6-12i\Leftrightarrow (x^2-y^2=6)\;\wedge\;(2xy=-12)\Leftrightarrow\ldots$
 
  • #16
Fernando Revilla said:
Not necessary for square roots, $\sqrt{6-12i}=x+iy\Leftrightarrow (x+iy)^2=6-12i\Leftrightarrow (x^2-y^2=6)\;\wedge\;(2xy=-12)\Leftrightarrow\ldots$
So I ended up getting

$x = \pm\sqrt{3\pm 3\sqrt{5}}$ and $y = \pm\sqrt{-3\pm 3\sqrt{5}}$

Something is wrong I believe.

I tested the values and for $x^2-y^2 = 6$

Only $x=\sqrt{3+3\sqrt{5}}$ and $y=\sqrt{-3+3\sqrt{5}}$ worked but when multiplied together they weren't negative 6.
 
Last edited:
  • #17
dwsmith said:
So I ended up getting

$x = \pm\sqrt{3\pm 3\sqrt{5}}$ and $y = \pm\sqrt{-3\pm 3\sqrt{5}}$

Something is wrong I believe.

I tested the values and for $x^2-y^2 = 6$

Only $x=\sqrt{3+3\sqrt{5}}$ and $y=\sqrt{-3+3\sqrt{5}}$ worked but when multiplied together they weren't negative 6.

Actually you should have found that there are four possible solutions, since $ \displaystyle x = \pm \sqrt{3 + 3\sqrt{5}} $ and $\displaystyle y = \pm \sqrt{-3 + 3\sqrt{5}} $ are all possible...

Anyway, if we multiply their absolute values...

\[ \displaystyle \begin{align*} \left(\sqrt{3 + 3\sqrt{5}}\right)\left(\sqrt{-3 + 3\sqrt{5}}\right) &= \sqrt{\left(3 + 3\sqrt{5}\right)\left(-3 + 3\sqrt{5}\right)} \\ &= \sqrt{-9 + 9\sqrt{5} - 9\sqrt{5} + 45} \\ &= \sqrt{36} \\ &= 6 \end{align*} \]

So the possible solutions are those which have differing signs (in order to get a negative when multiplied).

Therefore, the solutions are $\displaystyle (x, y) = \left(\sqrt{3 + 3\sqrt{5}}, -\sqrt{-3 + 3\sqrt{5}}\right)$ or $ \displaystyle (x, y) = \left(-\sqrt{3 + 3\sqrt{5}}, \sqrt{-3 + 3\sqrt{5}}\right)$.
 
  • #18
$e^{iz} = w = 3 + \sqrt{3 + 3\sqrt{5}} + i\left(2 - \sqrt{3 + 3\sqrt{5}}\right)$, $3 - \sqrt{3 + 3\sqrt{5}} + i\left(2 + \sqrt{3 + 3\sqrt{5}}\right)$, $3 - \sqrt{3 + 3\sqrt{5}} + i\left(2 + \sqrt{-3 + 3\sqrt{5}}\right)$, and $3 + \sqrt{3 + 3\sqrt{5}} + i\left(2 - \sqrt{-3 + 3\sqrt{5}}\right)$

$z = \tan^{-1}\left(\dfrac{2-\sqrt{3+3\sqrt{5}}}{3+\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{19+6\sqrt{5}+2\sqrt{3(1+\sqrt{5}}}\right)$

$z = \tan^{-1}\left(\dfrac{2+\sqrt{3+3\sqrt{5}}}{3-\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{19+6\sqrt{5}-2\sqrt{3(1+\sqrt{5}}}\right)$

$z = \tan^{-1}\left(\dfrac{2+\sqrt{-3+3\sqrt{5}}}{3-\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{\left(2+\sqrt{-3+3\sqrt{5}}\right)^2+\left(-3+\sqrt{-3+3\sqrt{5}}\right)^2}\right)$

$z = \tan^{-1}\left(\dfrac{2-\sqrt{-3+3\sqrt{5}}}{3+\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{\left(-2+\sqrt{-3+3\sqrt{5}}\right)^2+\left(3+\sqrt{-3+3\sqrt{5}}\right)^2}\right)$

Is this really correct?
 

FAQ: Solving $\sin(z) = 2 + 3i$ using complex numbers

What is the value of z in "All z such that sin(z) = 2 + 3i"?

The value of z is a complex number that satisfies the equation sin(z) = 2 + 3i. In other words, when the sine function is applied to z, the result is 2 + 3i.

Can z be a real number in "All z such that sin(z) = 2 + 3i"?

No, z cannot be a real number because the sine function only outputs complex numbers when given real inputs. In this case, the output is specifically 2 + 3i.

Is it possible for z to have multiple values in "All z such that sin(z) = 2 + 3i"?

Yes, it is possible for z to have multiple values. This is because the sine function is a periodic function with a period of 2π. Therefore, there are infinitely many values of z that satisfy the equation sin(z) = 2 + 3i.

How can I find the exact values of z in "All z such that sin(z) = 2 + 3i"?

To find the exact values of z, you can use the inverse sine function (arcsin) to solve for z. Since the output of sin(z) is 2 + 3i, the inverse sine function will give you the angle (z) whose sine equals 2 + 3i.

Are there any practical applications for "All z such that sin(z) = 2 + 3i"?

Yes, this equation has applications in fields like engineering, physics, and signal processing. For example, in electrical engineering, this equation can be used to analyze the behavior of electrical circuits with alternating current. In physics, it can be used to describe the motion of a damped harmonic oscillator. In signal processing, it can be used to analyze the frequency and phase of a complex signal.

Similar threads

Replies
4
Views
1K
Replies
3
Views
7K
Replies
6
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Back
Top