- #1
Dustinsfl
- 2,281
- 5
What is the best way to handle $\sin(z) = 2 + 3i$?
Option (1)
$\sin(z) = \sin(x + yi) = \sin(x)\cos(yi) + \sin(yi)\cos(x) = \sin(x)\cosh(y) + i\sinh(y)\cos(x)$
$\sin(x)\cosh(y) = 2$
$\sinh(y)\cos(x) = 3$
Option (2)
$\displaystyle\sin(z) = \frac{e^{zi}-e^{-zi}}{2i} = 2 + 3i$
Which option is better or is there another option?
Also, I am stuck on (1) and (2) anyways.
Option (1)
$\sin(z) = \sin(x + yi) = \sin(x)\cos(yi) + \sin(yi)\cos(x) = \sin(x)\cosh(y) + i\sinh(y)\cos(x)$
$\sin(x)\cosh(y) = 2$
$\sinh(y)\cos(x) = 3$
Option (2)
$\displaystyle\sin(z) = \frac{e^{zi}-e^{-zi}}{2i} = 2 + 3i$
Which option is better or is there another option?
Also, I am stuck on (1) and (2) anyways.