- #1
ergospherical
- 1,055
- 1,347
Looking to evaluate an integral of the form $$\int_0^{\infty} \frac{p^2 dp}{\mathrm{exp}(a\sqrt{p^2+b^2}) \pm 1} $$Changing to ##x(p) = a\sqrt{p^2 + b^2}## gives $$\frac{1}{a^3} \int_0^{\infty} \frac{\sqrt{x^2-(b/a)^2}}{e^x \pm 1} dx$$Wolfram alpha doesn't tell me anything useful, sadly.