MHB Solving System of Equations: xy, yz, zx

AI Thread Summary
The discussion focuses on solving a system of equations involving three variables x, y, and z, defined by the equations xy/(x+y) = a, yz/(y+z) = b, and zx/(z+x) = c, with a, b, and c being non-zero constants. Participants explore various algebraic techniques and substitutions to simplify the equations and find relationships between the variables. The conversation emphasizes the importance of understanding the implications of the equations and potential methods for isolating variables. Solutions may involve manipulating the equations to express one variable in terms of the others or using numerical methods for specific values of a, b, and c. The thread highlights the complexity of the problem and the collaborative effort to derive a comprehensive solution.
solakis1
Messages
407
Reaction score
0
Solve the following systemof equations:

$\dfrac{xy}{x+y}=a$

$\dfrac{yz}{y+z}=b$

$\dfrac{zx}{z+x}=c$

where a,b,c are not zero
 
Mathematics news on Phys.org
solakis said:
Solve the following systemof equations:

$\dfrac{xy}{x+y}=a$

$\dfrac{yz}{y+z}=b$

$\dfrac{zx}{z+x}=c$

where a,b,c are not zero
Inverting the 3 we get$\frac{1}{y} + \frac{1}{x} = \frac{1}{a}\dots(1)$$\frac{1}{y} + \frac{1}{z} = \frac{1}{b}\dots(2)$$\frac{1}{z} + \frac{1}{x} = \frac{1}{c}\dots(3)$Add the 3 to get$2(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$Or $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2}(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$Subtracting (1) from above we get$\frac{1}{z} = \frac{1}{2}(\frac{1}{b} + \frac{1}{c}- \frac{1}{a})$Or $\frac{1}{z} = \frac{1}{2}\frac{ac + ab - bc}{abc}$Or $z= \frac{2abc}{ac + ab - bc}$ Similarly $x= \frac{2abc}{ab + bc - ac}$And $y= \frac{2abc}{ac - ab + bc}$
 
nery good
 
solakis said:
very good
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top