- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to apply the simplex algorithm that finds the vertices of the following system of restrictions:
$$2x_1+3x_2-x_3+4x_4=8 \\ -x_1+2x_2-6x_3+7x_4=3 \\ x_i \geq 0, i=1,2,3,4$$
I took at the beginning the basic feasible solution non degenerate solution $(1,2,0,0)$ and I wrote the following tableaux:
$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & \theta & \\
P_1 & 1 & 2 & 3 & -1 & 4 & \frac{1}{4} & L_1\\ \\
P_2 & 2 & -1 & 2 & -6 & 7 & \frac{2}{7} & L_2
\end{matrix}$
We choose $P_4$ to get in the basis. The pivot is the number $4$ and so $P_1$ gets out of the basis.
Then I get the following tableaux:
$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & \theta & \\
P_4 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} & -\frac{1}{4} & 1 & & L_1'=\frac{L_1}{4}\\ \\
P_2 & \frac{1}{4} & -\frac{9}{2} & -\frac{13}{4} & -\frac{17}{4} & 0 & & L_2'=L_2-7L_1'
\end{matrix}$So we get that $\left( 0, \frac{1}{4}, 0, \frac{1}{4}\right)$ is a basic feasible solution.
But using an other method, I found these vertices: $(1,2,0,0), \left( \frac{22}{9}, 0,0, \frac{7}{9}\right), \left(0, \frac{45}{16}, \frac{7}{16}, 0 \right), \left( 0,0, \frac{44}{17}, \frac{45}{17} \right)$.
So is one of the first or second tableaux wrong?
I want to apply the simplex algorithm that finds the vertices of the following system of restrictions:
$$2x_1+3x_2-x_3+4x_4=8 \\ -x_1+2x_2-6x_3+7x_4=3 \\ x_i \geq 0, i=1,2,3,4$$
I took at the beginning the basic feasible solution non degenerate solution $(1,2,0,0)$ and I wrote the following tableaux:
$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & \theta & \\
P_1 & 1 & 2 & 3 & -1 & 4 & \frac{1}{4} & L_1\\ \\
P_2 & 2 & -1 & 2 & -6 & 7 & \frac{2}{7} & L_2
\end{matrix}$
We choose $P_4$ to get in the basis. The pivot is the number $4$ and so $P_1$ gets out of the basis.
Then I get the following tableaux:
$\begin{matrix}
B & b & P_1 & P_2 & P_3 & P_4 & \theta & \\
P_4 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} & -\frac{1}{4} & 1 & & L_1'=\frac{L_1}{4}\\ \\
P_2 & \frac{1}{4} & -\frac{9}{2} & -\frac{13}{4} & -\frac{17}{4} & 0 & & L_2'=L_2-7L_1'
\end{matrix}$So we get that $\left( 0, \frac{1}{4}, 0, \frac{1}{4}\right)$ is a basic feasible solution.
But using an other method, I found these vertices: $(1,2,0,0), \left( \frac{22}{9}, 0,0, \frac{7}{9}\right), \left(0, \frac{45}{16}, \frac{7}{16}, 0 \right), \left( 0,0, \frac{44}{17}, \frac{45}{17} \right)$.
So is one of the first or second tableaux wrong?