- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Let $I=(0,1)$. Find solution $\phi$ that has a continuous derivative in $\mathbb{R}$ and satisfies:
$$y''=0 \text{ in } I \\ y''+k^2y=0 \text{ apart from I , where k>0}$$
and furthermore $\phi$ has the form:$\left\{\begin{matrix}
e^{ikx}+ A e^{-ikx} &, x \leq 0 \\
B e^{ikx} &, x \geq 1
\end{matrix}\right.$
i.e. find $\phi$ computing the constants $A,B$ and computing $\phi$ in the interval $I$.I have tried the following:
$\phi$ satisfies the differential equation $y''=0$ in $I$.
So $\phi''(x)=0 \Rightarrow \phi(x)= c_1 x + c_2, c_1, c_2 \in \mathbb{R}, \forall x \in I$.
$\phi$ has a continuous derivative in $\mathbb{R}$, so:
$$\lim_{x \to 0^{-1}} \phi(x)= \lim_{x \to 0^{+}} \phi(x) \\ \lim_{x \to 1^{-1}} \phi(x)= \lim_{x \to 1^{+}} \phi(x) \\ \lim_{x \to 0^{-1}} \phi'(x)= \lim_{x \to 0^{+}} \phi'(x) \\ \lim_{x \to 1^{-1}} \phi'(x)= \lim_{x \to 1^{+}} \phi'(x) $$
$\lim_{x \to 0^{-1}} \phi(x)= \lim_{x \to 0^{+}} \phi(x) \Rightarrow 1+A=c_2 (\star)$
$\lim_{x \to 1^{-1}} \phi(x)= \lim_{x \to 1^{+}} \phi(x) \Rightarrow Be^{ik}=c_1+c_2 (\star \star)$
$\lim_{x \to 0^{-1}} \phi'(x)= \lim_{x \to 0^{+}} \phi'(x) \Rightarrow ik-ikA=c_1 (1)$
$\lim_{x \to 1^{-1}} \phi'(x)= \lim_{x \to 1^{+}} \phi'(x) \Rightarrow ik e^{ik}-ik A e^{-ik}=c_1 (2)$
$(1), (2) \Rightarrow ike^{ik}-ikAe^{-ik}=ik-ikA \Rightarrow A= \frac{e^{ik}-1}{e^{-ik}-1}$
Thus, $c_1=ik \frac{e^{-ik}-e^{ik}}{e^{-ik}-1}$
$(\star) \Rightarrow c_2=\frac{e^{-ik}+e^{ik}-2}{e^{-ik}-1}$
$(\star \star) \Rightarrow B=\frac{e^{-2ik}(ik+1)+(1-ik)-2}{e^{-ik}-1}$.Therefore,$\phi(x)=\left\{\begin{matrix}
e^{ikx}+ \frac{e^{ik}-1}{e^{-ik}-1} e^{-ikx} &, x \leq 0 \\
\frac{e^{-2ik}(ik+1)+(1-ik)-2}{e^{-ik}-1} e^{ikx} &, x \geq 1
\end{matrix}\right.$
and $\phi(x)=ik \frac{e^{-ik}-e^{ik}}{e^{-ik}-1} x+\frac{e^{-ik}+e^{ik}-2}{e^{-ik}-1} $ in $I$.
Is it right or have I done something wrong? (Thinking)
Let $I=(0,1)$. Find solution $\phi$ that has a continuous derivative in $\mathbb{R}$ and satisfies:
$$y''=0 \text{ in } I \\ y''+k^2y=0 \text{ apart from I , where k>0}$$
and furthermore $\phi$ has the form:$\left\{\begin{matrix}
e^{ikx}+ A e^{-ikx} &, x \leq 0 \\
B e^{ikx} &, x \geq 1
\end{matrix}\right.$
i.e. find $\phi$ computing the constants $A,B$ and computing $\phi$ in the interval $I$.I have tried the following:
$\phi$ satisfies the differential equation $y''=0$ in $I$.
So $\phi''(x)=0 \Rightarrow \phi(x)= c_1 x + c_2, c_1, c_2 \in \mathbb{R}, \forall x \in I$.
$\phi$ has a continuous derivative in $\mathbb{R}$, so:
$$\lim_{x \to 0^{-1}} \phi(x)= \lim_{x \to 0^{+}} \phi(x) \\ \lim_{x \to 1^{-1}} \phi(x)= \lim_{x \to 1^{+}} \phi(x) \\ \lim_{x \to 0^{-1}} \phi'(x)= \lim_{x \to 0^{+}} \phi'(x) \\ \lim_{x \to 1^{-1}} \phi'(x)= \lim_{x \to 1^{+}} \phi'(x) $$
$\lim_{x \to 0^{-1}} \phi(x)= \lim_{x \to 0^{+}} \phi(x) \Rightarrow 1+A=c_2 (\star)$
$\lim_{x \to 1^{-1}} \phi(x)= \lim_{x \to 1^{+}} \phi(x) \Rightarrow Be^{ik}=c_1+c_2 (\star \star)$
$\lim_{x \to 0^{-1}} \phi'(x)= \lim_{x \to 0^{+}} \phi'(x) \Rightarrow ik-ikA=c_1 (1)$
$\lim_{x \to 1^{-1}} \phi'(x)= \lim_{x \to 1^{+}} \phi'(x) \Rightarrow ik e^{ik}-ik A e^{-ik}=c_1 (2)$
$(1), (2) \Rightarrow ike^{ik}-ikAe^{-ik}=ik-ikA \Rightarrow A= \frac{e^{ik}-1}{e^{-ik}-1}$
Thus, $c_1=ik \frac{e^{-ik}-e^{ik}}{e^{-ik}-1}$
$(\star) \Rightarrow c_2=\frac{e^{-ik}+e^{ik}-2}{e^{-ik}-1}$
$(\star \star) \Rightarrow B=\frac{e^{-2ik}(ik+1)+(1-ik)-2}{e^{-ik}-1}$.Therefore,$\phi(x)=\left\{\begin{matrix}
e^{ikx}+ \frac{e^{ik}-1}{e^{-ik}-1} e^{-ikx} &, x \leq 0 \\
\frac{e^{-2ik}(ik+1)+(1-ik)-2}{e^{-ik}-1} e^{ikx} &, x \geq 1
\end{matrix}\right.$
and $\phi(x)=ik \frac{e^{-ik}-e^{ik}}{e^{-ik}-1} x+\frac{e^{-ik}+e^{ik}-2}{e^{-ik}-1} $ in $I$.
Is it right or have I done something wrong? (Thinking)