- #1
Weave
- 143
- 0
Homework Statement
The following sum
[tex]\sqrt{9 - \left(\frac{3}{n}\right)^2} \cdot \frac{3}{n} + \sqrt{9 - \left(\frac{6}{n}\right)^2} \cdot \frac{3}{n} + \ldots + \sqrt{9 - \left(\frac{3 n}{n}\right)^2} \cdot \frac{3}{n}[/tex]
is a right Riemann sum for the definite integral. Solve as n->infinity
[tex]\int_0^b f(x)\, dx[/tex]
Homework Equations
[tex]\int_0^b f(x)\, dx[/tex]
The Attempt at a Solution
I can't seem to get this one. My work is a bit long to show but I get
(9/n^3) *Sigma(i=1,n) [sqrt(n^2+i^2)]
not sure what to do here, do i substitute Sigma(i=1,n)(i^2=(n(n+1))/2?c
Last edited: