- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Thanks again to those who participated in last week's POTW! Here's this week's problem!
-----
Problem: Given the Fourier series $\displaystyle t=2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\sin(nt)$ ($-\pi < t <\pi$), show that $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.
-----
Hint: [sp]Integrate the Fourier series an appropriate number of times, and then evaluate the result at an appropriate value for $t$.[/sp]
-----
Problem: Given the Fourier series $\displaystyle t=2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\sin(nt)$ ($-\pi < t <\pi$), show that $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.
-----
Hint: [sp]Integrate the Fourier series an appropriate number of times, and then evaluate the result at an appropriate value for $t$.[/sp]