- #1
Dustinsfl
- 2,281
- 5
I have already solved the main portions.
I have
$$
T(x,t) = \sum_{n = 1}^{\infty}A_n\cos\lambda_n x\exp(-\lambda_n^2t)
$$
The eigenvalues are determined by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
The initial condition is $T(x,0) =1$.
For the particular case of $f(x) = 1$, numerically determine the series coefficients $A_n$ and construct a series representation for $T(x,t)$.
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$
I have
$$
T(x,t) = \sum_{n = 1}^{\infty}A_n\cos\lambda_n x\exp(-\lambda_n^2t)
$$
The eigenvalues are determined by
$$
\tan\lambda_n = \frac{1}{\lambda_n}
$$
The initial condition is $T(x,0) =1$.
For the particular case of $f(x) = 1$, numerically determine the series coefficients $A_n$ and construct a series representation for $T(x,t)$.
How do I do this?
$$
A_n = 2\int_0^1\cos\lambda_n xdx
$$