- #1
docnet
Gold Member
- 799
- 486
- Homework Statement
- psb
- Relevant Equations
- psb
I tried to follow the method outlined in lectures, and ended up with an incorrect solution. My understanding of PDEs is a bit shaky so I thank anyone for constructive feedback or information.
The solution to the Poisson equation
\begin{equation}
-\Delta u(x)=\frac{q}{\pi a^3}e^{-\frac{2||x||}{a}}
\end{equation}
is given by
\begin{equation}
u(x)=\int_{R^3}\Phi(x-y)f(y)dy
\end{equation}
in ##R^3## and spherically symmetric ##f(y)## this is
\begin{equation}
u(x)=\frac{1}{2||x||}\int_0^\infty r\tilde{f}(r)\Big(||x||+r-\Big|||x||-r\Big|\Big)dr
\end{equation}
\begin{equation}
\frac{1}{2||x||}\int_0^\infty r\frac{q}{\pi a^3}e^{-\frac{2||x||}{a}}\Big(||x||+r-\Big|||x||-r\Big|\Big)dr
\end{equation}
\begin{equation}
\frac{1}{||x||}\frac{q}{\pi a^3}\int_0^\infty e^{-\frac{2r}{a}}r^2dr
\end{equation}
after integration by parts
\begin{equation}
u(x)=\frac{1}{||x||}\frac{q}{4\pi}
\end{equation}