- #1
Dustinsfl
- 2,281
- 5
Consider the quasi-linear 1-D wave equation
$$
\frac{\partial\rho}{\partial t} + 2\rho\frac{\partial\rho}{\partial x} = 0
$$
with the piecewise constant initial conditions
$$
\rho(x,0) = \begin{cases}
\rho_1, & x < -x_0\\
\rho_2, & -x_0 < x < x_0\\
\rho_3, & x > x_0
\end{cases}
$$
where $\rho_1 > \rho_2 > \rho_3$ and $\rho_i, x_0\in\mathbb{R}$ with $i = 1, 2, 3$.Argue that two shocks form at $x = \pm x_0$ in this case and sketch the space-time diagram for the density field.
I have no idea on what to do or how to start.
$$
\frac{\partial\rho}{\partial t} + 2\rho\frac{\partial\rho}{\partial x} = 0
$$
with the piecewise constant initial conditions
$$
\rho(x,0) = \begin{cases}
\rho_1, & x < -x_0\\
\rho_2, & -x_0 < x < x_0\\
\rho_3, & x > x_0
\end{cases}
$$
where $\rho_1 > \rho_2 > \rho_3$ and $\rho_i, x_0\in\mathbb{R}$ with $i = 1, 2, 3$.Argue that two shocks form at $x = \pm x_0$ in this case and sketch the space-time diagram for the density field.
I have no idea on what to do or how to start.