- #1
the_dialogue
- 79
- 0
Homework Statement
If I have the following Sturm-Liouville system:
[tex]
(\frac{\partial^2}{\partial r^2}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^2}\frac{\partial^2}{\partial \phi^2}+\lambda_{k,m}^2)\phi_{k,m}(r,\phi)=0, (a<r<b,0<=\phi<=2\pi
[/tex]
[tex]
\phi_{k,m}(r,\phi)=0, (r=a,0<=\phi<=2\pi
[/tex]
[tex]
\phi_{k,m}(r,\phi)=0, (r=b, 0<=\phi<=2\pi
[/tex]
I'm told the solution to this is the following:
[tex]
\newcommand{\colv}[2] {\left(\begin{array}{c} #1 \\ #2 \end{array}\right)}
\phi_{k,m}(r,\phi)=C_{k,m}(r){\colv{cos(m\phi}{sin(m\phi)}, (k=1,2...; m=0,1,2...),
[/tex]
where
[tex]
C_{k,m}(r)=J_m(\lambda_{k,m}r)Y_m(\lambda_{k,m}a)-J_m(\lambda_{k,m}a)Y_m(\lambda_{k,m}r)
[/tex]
and [tex](\lambda_{k,m}r)[/tex] is found by setting [tex]C_{k,m}(b)=0[/tex].
Homework Equations
Now I'm trying to solve the same system at different boundary conditions:
[tex]
(\frac{\partial^2}{\partial r^2}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^2}\frac{\partial^2}{\partial \phi^2}+\lambda_{k,m}^2)\phi_{k,m}(r,\phi)=0, (r<b,0<=\phi<=2\pi
[/tex]
[tex]
\phi_{k,m}(r,\phi)=0, (r=b, 0<=\phi<=2\pi)
[/tex]
With this system, where the constraints at [tex]a[/tex] have been removed (i.e. a=0), how should I approach solving for [tex]\phi_{k,m}(r,\phi)[/tex]?