- #1
Jack1235
- 2
- 1
- Homework Statement
- The differential equation ##5s(t)-4s''(t)=r(t)## can be solved by the convolution ##s=q*r## where ##q(t)=c_1*\exp(-c_2*|(t)|)##. Find ##c_1+c_2##.
- Relevant Equations
- $$\int_{-\infty}^{\infty} r(t-u)s(u) \,du$$
$s=c_1*\exp(-c_2*|(t)|)*r(t)$ But how can I solve $c_1+c_2$ ?