- #1
gurbir_s
- 11
- 4
The time rate of change of neutron abundance ##X_n## is given by
$$\frac{dX_n}{dt} = \lambda - (\lambda + \hat\lambda)X_n$$
where ##\lambda## is neutron production rate per proton and ##\hat\lambda## is neutron destruction rate per neutron.
Given the values of ##\lambda## and ##\hat\lambda## at various values of time, I need to calculate ##X_n##.I have also calculated values of ##\lambda 's## at intermediate times. I have tried using Euler method and RK4 method to solve this equation, but the solutions for ##X_n## diverge to inf values.
[Here][2] is the link to the complete research paper "Primordial Helium Abundance and the Primordial Fireball. II" by P.J.E. Peebles.
Any help or idea on how to solve it will be appreciated : ) [1]: Data for ##\lambda 's## https://i.stack.imgur.com/lnW9M.png
[2]: https://ui.adsabs.harvard.edu/abs/1966ApJ...146..542P/abstract
$$\frac{dX_n}{dt} = \lambda - (\lambda + \hat\lambda)X_n$$
where ##\lambda## is neutron production rate per proton and ##\hat\lambda## is neutron destruction rate per neutron.
Given the values of ##\lambda## and ##\hat\lambda## at various values of time, I need to calculate ##X_n##.I have also calculated values of ##\lambda 's## at intermediate times. I have tried using Euler method and RK4 method to solve this equation, but the solutions for ##X_n## diverge to inf values.
[Here][2] is the link to the complete research paper "Primordial Helium Abundance and the Primordial Fireball. II" by P.J.E. Peebles.
Any help or idea on how to solve it will be appreciated : ) [1]: Data for ##\lambda 's## https://i.stack.imgur.com/lnW9M.png
[2]: https://ui.adsabs.harvard.edu/abs/1966ApJ...146..542P/abstract