- #1
LagrangeEuler
- 717
- 20
- Homework Statement
- Show that
[tex]\int^{1}_{-1}x^2\frac{d^m}{dx^m}(1-x^2)^mdx=0[/tex] for ##m \geq 2##.
- Relevant Equations
- Partial integration
[tex]\int udv=uv-\int vdu [/tex]
It is clear that ##1-x^2## is equal to zero in both boundaries ##1## and ##-1##. So for me is interesting to think like this
[tex]\frac{d^m}{dx^m}(1-x^2)^m=\frac{d}{dx}(1-x^2)\frac{d}{dx}(1-x^2)\frac{d}{dx}(1-x^2)...[/tex]
and
[tex]\frac{d^{m-1}}{dx^{m-1}}(1-x^2)^m=(1-x^2)\frac{d}{dx}(1-x^2)\frac{d}{dx}(1-x^2)\frac{d}{dx}(1-x^2)...[/tex]
so there exists one ##(1-x^2)## that is not differentiate. Am I right? So is it for ##dv=\frac{d^m}{dx^m}(1-x^2)^mdx##, ##v=\frac{d^{m-1}}{dx^{m-1}}(1-x^2)^m##?
[tex]\frac{d^m}{dx^m}(1-x^2)^m=\frac{d}{dx}(1-x^2)\frac{d}{dx}(1-x^2)\frac{d}{dx}(1-x^2)...[/tex]
and
[tex]\frac{d^{m-1}}{dx^{m-1}}(1-x^2)^m=(1-x^2)\frac{d}{dx}(1-x^2)\frac{d}{dx}(1-x^2)\frac{d}{dx}(1-x^2)...[/tex]
so there exists one ##(1-x^2)## that is not differentiate. Am I right? So is it for ##dv=\frac{d^m}{dx^m}(1-x^2)^mdx##, ##v=\frac{d^{m-1}}{dx^{m-1}}(1-x^2)^m##?