MHB Solving trig equation cos(x)=sin(x) + 1/√3

  • Thread starter Thread starter sp3
  • Start date Start date
  • Tags Tags
    Trig
AI Thread Summary
The discussion revolves around solving the trigonometric equation cos(x) = sin(x) + 1/√3 and finding the value of cos^3(x) - sin^3(x). Participants derive a quadratic equation for sin(x) and find two solutions for x within the range of 0 to 2π. They also explore using identities to simplify the expression for cos^3(x) - sin^3(x). Ultimately, the correct value is determined to be 4/(3√3) by substituting the derived values into the identity for the difference of cubes.
sp3
Messages
8
Reaction score
0
Hello, I'm trying to solve the following equation : cos(x)=sin(x) + 1/$$\sqrt{3}$$
in order to find cos(x)3 - sin3(x) = ?

i tried to slove for sin(x) using sin2 + cos2 =1 replacing cos(x) by the first equation and i end up with a second degree polynomial using x = sin(x) and there are 2 solutions, it seems off...
btw i used the (a+b)2 identity for (sin(x) + 1/$$\sqrt{3}$$)2

if anyone could help me i thank you in advance!
 
Mathematics news on Phys.org
Okay, I presume you wrote \sqrt{1- sin^2(x)}= sin(x)+ \frac{1}{\sqrt{3}} and then, squaring both sides, 1- sin^2(x)= sin^2(x)+ \frac{2}{\sqrt{3}}sin(x)+ \frac{1}{3}.

Then we have sin^2(x)+ \frac{1}{\sqrt{3}}sin(x)- \frac{1}{3}= 0.

By the quadratic formula, sin(x)= \frac{-\frac{1}{\sqrt{3}}\pm\sqrt{\frac{1}{3}+ \frac{4}{3}}}{2}= \frac{-1\pm \sqrt{5}}{2\sqrt{3}}.

Yes, there are two solutions (between 0 and 2\pi). Numerically, sin(x)= 0.3568 so x= 0.3649 and sin(x)= -0.9342 so x= -1.2059 to four decimal places.
 
thank you! i find the same thing but if i have to solve cos(x)3- sin(x)3 how do i get to one answer with this $$\pm$$ ? the answer is $$\frac{4}{3\sqrt{3}}$$. I thought about using the identity
a3-b3 = (a-b)(a2+2ab+b2) as an alternative method with a=sin(x)+$$\frac{1}{\sqrt{3}}$$ and b=sin(x) . I find this :

$$\frac{12sin(x)^2+\sqrt{3}*4sin(x)+1}{3\sqrt{3}}$$

Idk how to further develop. In the identity I factorized $$(sin+\frac{1}{\sqrt{3}})^2$$, found in (a-b) sinx-sinx =0 so there’s $$\frac{1}{\sqrt{3}}$$ left. any help is welcome!

Btw people here are so quick to answer this website is bomb, thank you really! Appreciate it ;)
 
Last edited:
Hello SP3.
you do not need $\sin\,x$ or $\cos\,x$
you are given
$\cos\,x - \sin\,x = \frac{1}{\sqrt{3}}$
$\cos^3 x - \sin ^3 x = (\cos\,x - \sin\,x)^3 + 3 (\cos\,x - \sin\,x)(\cos\,x \sin\,x)\cdots(1)$
so you need to evaluate $\cos\,x \sin\,x$
$\cos\,x - \sin\,x = \frac{1}{\sqrt{3}}$
square both sides to get $ 1 - 2\cos\,x \sin\,x = \frac{1}{3}$
or $ 2\cos\,x \sin\,x = \frac{2}{3}$
or $ \cos\,x \sin\,x = \frac{1}{3}$
you can put the value of $ \cos\,x \sin\,x = \frac{1}{3}$ and $\cos\,x - \sin\,x = \frac{1}{\sqrt{3}}$ in (1) to get
$\cos^3 x - \sin ^3 x = (\cos\,x - \sin\,x)^3 + 3 (\cos\,x - \sin\,x)(\cos\,x \sin\,x)$
$= \frac{1}{3\sqrt{3}} + 3 \frac{1}{\sqrt{3}} \frac{1}{3}$
$=\frac{1+3}{3\sqrt{3}}$
$=\frac{4}{3\sqrt{3}}$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top