Solving Trigonometric Integral Using Trig Substitution and Limits of Integration

In summary: You'll get \theta = \pi/4 and \theta = \pi/3, which are easily evaluated.In summary, the integral \int\frac{1}{t^3\sqrt{t^2-1}}dt with limits of integration [\sqrt{2}, 2] can be solved using trigonometric substitution. After simplifying and converting the limits to theta, the integral becomes \int (cos \theta)^2 d\theta with limits [\pi/4, \pi/3]. Using the identity cos^2\theta = \frac{1+\cos(2\theta)}{2}, the integral can be easily evaluated to give the final answer \frac{\pi}{24}+\
  • #1
3.141592654
85
0

Homework Statement



[tex]\int\frac{1}{t^3\sqrt{t^2-1}}dt[/tex] with limits of integration [tex][\sqrt{2}, 2][/tex]

Homework Equations





The Attempt at a Solution



Using trig. sub, I have [tex]sec \theta=t[/tex]

[tex]dt=sec \theta tan \theta d \theta[/tex]

[tex]\int\frac{1}{t^3\sqrt{t^2-1}}dt[/tex] with limits of integration [tex][\sqrt{2}, 2][/tex]

[tex]=\int\frac{sec \theta tan\theta d \theta}{(sec \theta)^3\sqrt{(sec \theta)^2-1}}[/tex]

[tex]=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(sec \theta)^2-1}}[/tex]

[tex]=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(tan \theta)^2}}[/tex]

[tex]=\int\frac{tan \theta d \theta}{(sec \theta)^2tan \theta}[/tex]

[tex]=\int\frac{d \theta}{(sec \theta)^2}[/tex]

[tex]=\int\cos \theta^2 d\theta[/tex]

[tex]=\int\frac{1+cos \theta}{2} d\theta[/tex]

[tex]=\int\frac{1}{2}+\frac{cos \theta}{2} d\theta[/tex]

[tex]=\frac{1}{2}\int d \theta +\frac{1}{2}\int cos \theta d \theta[/tex]

[tex]=\frac{1}{2} \theta | +\frac{1}{2}sin \theta |[/tex]

[tex]=\frac{1}{2}arcsec t +\frac{1}{2}t[/tex] with limits [tex][\sqrt{2},
2][/tex]

[tex]=\frac{1}{2}[arcsec (2)-arcsec (\sqrt{2})]+\frac{1}{2}[2-\sqrt{2}][/tex]

I need to get to the answer: [tex]\frac{\pi}{24}+\frac{\sqrt{3}}{8}-\frac{1}{4}[/tex]. I don't see anything wrong up to this point so I guess my question is more of an algebra question, but how could I arrive at the stated answer?
 
Physics news on Phys.org
  • #2
[tex]\cos^2\theta = \frac{1 + \cos{(2 \theta})}{2}[/tex]
 
  • #3
That was a silly mistake.

Alright, so:

[tex]\int (cos \theta)^2 d\theta[/tex]

[tex]=\int \frac{1+cos(2\theta)}{2} d\theta[/tex]

[tex]=\frac{1}{2}\int d\theta+\frac{1}{2}\int cos(2\theta)d\theta[/tex]

[tex]=\frac{1}{2}\theta| +\frac{1}{2}\frac{sin(2\theta)}{2}|[/tex]

[tex]=\frac{1}{2}\theta| +\frac{1}{4}sin(2\theta)|[/tex]

[tex]=\frac{1}{2}\theta| +\frac{1}{4}(2sin\theta cos\theta)|[/tex]

[tex]=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t})(\frac{1}{t})|[/tex]

[tex]=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t^2})|[/tex]

[tex]=\frac{1}{2}arcsin (t)| +\frac{1}{2}(1-\frac{1}{t^2})|[/tex]

with limits of integration [tex][\sqrt{2}, 2][/tex]

[tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{2^2})-(1-\frac{1}{\sqrt{2}^2})[/tex]

[tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2})][/tex]

[tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2}})][/tex]

[tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{3}{8}-\frac{1}{4}[/tex]

I'm not sure if this is correct, but how do I deal with the arcsin values since they aren't in the domain of the standard arcsin function? Lastly, how would I algebraically convert this to
[tex]
\frac{\pi}{24}+\frac{\sqrt{3}}{8}-\frac{1}{4}
[/tex]?

Thanks.
 
  • #4
3.141592654 said:
[tex]=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t})(\frac{1}{t})|[/tex]

[tex]=\frac{1}{2}arcsin (t)| +\frac{1}{2}(\frac{t^2-1}{t^2})|[/tex]

[tex]=\frac{1}{2}arcsin (t)| +\frac{1}{2}(1-\frac{1}{t^2})|[/tex]

with limits of integration [tex][\sqrt{2}, 2][/tex]

[tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{2^2})-(1-\frac{1}{\sqrt{2}^2})[/tex]

[tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2})][/tex]

[tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{1}{2}[(1-\frac{1}{4})-(1-\frac{1}{2}})][/tex]

[tex]=\frac{1}{2}(arcsin(2)-arcsin(\sqrt{2})) +\frac{3}{8}-\frac{1}{4}[/tex]
Thanks.

You don't have to go through all this drama. You know that t=sec(theta), so cos(theta)=1/t. Just use this to convert the limits of integration to theta.
 

FAQ: Solving Trigonometric Integral Using Trig Substitution and Limits of Integration

What is a trigonometric integral?

A trigonometric integral is an integration problem that involves trigonometric functions, such as sine, cosine, tangent, or their inverse functions. It can also refer to the process of solving such an integration problem.

How do you solve a trigonometric integral?

There are various methods for solving trigonometric integrals, including using trigonometric identities, substitution, and integration by parts. The specific method used will depend on the form of the integral.

What is the difference between a definite and indefinite trigonometric integral?

A definite trigonometric integral has specific limits of integration, meaning that the solution will be a numerical value. An indefinite trigonometric integral does not have limits of integration, so the solution will be an expression with an arbitrary constant.

Can trigonometric integrals be solved using a calculator?

Yes, many calculators have built-in functions for solving trigonometric integrals. However, it is important to check the accuracy of the calculator's solution and understand the steps used to solve the integral.

What are some real-world applications of trigonometric integrals?

Trigonometric integrals are used in various fields, including physics, engineering, and economics. They can be used to calculate areas, volumes, and other quantities in real-world problems involving trigonometric functions.

Back
Top