- #1
3.141592654
- 85
- 0
Homework Statement
[tex]\int\frac{1}{t^3\sqrt{t^2-1}}dt[/tex] with limits of integration [tex][\sqrt{2}, 2][/tex]
Homework Equations
The Attempt at a Solution
Using trig. sub, I have [tex]sec \theta=t[/tex]
[tex]dt=sec \theta tan \theta d \theta[/tex]
[tex]\int\frac{1}{t^3\sqrt{t^2-1}}dt[/tex] with limits of integration [tex][\sqrt{2}, 2][/tex]
[tex]=\int\frac{sec \theta tan\theta d \theta}{(sec \theta)^3\sqrt{(sec \theta)^2-1}}[/tex]
[tex]=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(sec \theta)^2-1}}[/tex]
[tex]=\int\frac{tan \theta d \theta}{(sec \theta)^2\sqrt{(tan \theta)^2}}[/tex]
[tex]=\int\frac{tan \theta d \theta}{(sec \theta)^2tan \theta}[/tex]
[tex]=\int\frac{d \theta}{(sec \theta)^2}[/tex]
[tex]=\int\cos \theta^2 d\theta[/tex]
[tex]=\int\frac{1+cos \theta}{2} d\theta[/tex]
[tex]=\int\frac{1}{2}+\frac{cos \theta}{2} d\theta[/tex]
[tex]=\frac{1}{2}\int d \theta +\frac{1}{2}\int cos \theta d \theta[/tex]
[tex]=\frac{1}{2} \theta | +\frac{1}{2}sin \theta |[/tex]
[tex]=\frac{1}{2}arcsec t +\frac{1}{2}t[/tex] with limits [tex][\sqrt{2},
2][/tex]
[tex]=\frac{1}{2}[arcsec (2)-arcsec (\sqrt{2})]+\frac{1}{2}[2-\sqrt{2}][/tex]
I need to get to the answer: [tex]\frac{\pi}{24}+\frac{\sqrt{3}}{8}-\frac{1}{4}[/tex]. I don't see anything wrong up to this point so I guess my question is more of an algebra question, but how could I arrive at the stated answer?