- #1
pk415
- 5
- 0
We are supposed to work this using Laplace transforms
[tex]U_{tt}=9U_{xx}; -infty<x<infty[/tex]
[tex]U(x,0)=sinx[/tex]
[tex]U_t(x,0)=0[/tex]
The attempt at a solution
[tex]Let L=\hat{U}[/tex]
[tex]L[U_{tt}]=s^2\hat{U}-s(sinx)[/tex]
[tex]L[9U_{xx}]=9\hat{U}_{xx}[/tex]
[tex]s^2\hat{U}-s(sinx)=9\hat{U}_{xx}[/tex]
[tex]\hat{U}_{xx}-\frac{s^2}{9}\hat{U}=-\frac{s}{9}sinx[/tex]
This is a second order nonhomogeneous equation where the homogeneous solution is
[tex]\hat{U}_h=A(s)e^{\frac{s}{3}x}+B(s)e^{-\frac{s}{3}x}[/tex]
and the particular solution is
[tex]\hat{U}_p=\frac{s}{s^2+9}sinx[/tex]
Then we have
[tex]\hat{U}=A(s)e^{\frac{s}{3}x}+B(s)e^{-\frac{s}{3}x}+\frac{s}{s^2+9}sinx[/tex]
We know that
[tex]\lim_{x\rightarrow\infty}U=0[/tex]
[tex]\lim_{x\rightarrow{-\infty}}U=0[/tex]
That second one should say limit as x approaches negative infinity, can't figure out how to get latex to do that
[tex]\lim_{x\rightarrow\infty}\hat{U}=0[/tex]
[tex]\lim_{x\rightarrow\infty}\hat{U}=0[/tex]
Second one negative infinity again
If we plug these in we get
[tex]A(s)=\frac{\lim_{x\rightarrow\infty}\frac{s}{s^2+9}sinx}{\lim_{x\rightarrow\infty}e^{-\frac{s}{3}x}}}[/tex]
[tex]A(s)=0[/tex]
I'm not sure if that last step is legal, but if it is you can use the same reasoning for B(s)
Any ideas?
[tex]U_{tt}=9U_{xx}; -infty<x<infty[/tex]
[tex]U(x,0)=sinx[/tex]
[tex]U_t(x,0)=0[/tex]
The attempt at a solution
[tex]Let L=\hat{U}[/tex]
[tex]L[U_{tt}]=s^2\hat{U}-s(sinx)[/tex]
[tex]L[9U_{xx}]=9\hat{U}_{xx}[/tex]
[tex]s^2\hat{U}-s(sinx)=9\hat{U}_{xx}[/tex]
[tex]\hat{U}_{xx}-\frac{s^2}{9}\hat{U}=-\frac{s}{9}sinx[/tex]
This is a second order nonhomogeneous equation where the homogeneous solution is
[tex]\hat{U}_h=A(s)e^{\frac{s}{3}x}+B(s)e^{-\frac{s}{3}x}[/tex]
and the particular solution is
[tex]\hat{U}_p=\frac{s}{s^2+9}sinx[/tex]
Then we have
[tex]\hat{U}=A(s)e^{\frac{s}{3}x}+B(s)e^{-\frac{s}{3}x}+\frac{s}{s^2+9}sinx[/tex]
We know that
[tex]\lim_{x\rightarrow\infty}U=0[/tex]
[tex]\lim_{x\rightarrow{-\infty}}U=0[/tex]
That second one should say limit as x approaches negative infinity, can't figure out how to get latex to do that
[tex]\lim_{x\rightarrow\infty}\hat{U}=0[/tex]
[tex]\lim_{x\rightarrow\infty}\hat{U}=0[/tex]
Second one negative infinity again
If we plug these in we get
[tex]A(s)=\frac{\lim_{x\rightarrow\infty}\frac{s}{s^2+9}sinx}{\lim_{x\rightarrow\infty}e^{-\frac{s}{3}x}}}[/tex]
[tex]A(s)=0[/tex]
I'm not sure if that last step is legal, but if it is you can use the same reasoning for B(s)
Any ideas?