- #1
Albert1
- 1,221
- 0
(1) Given :$y>0$,let $y=[y]+(y)$
where we define $[y]$ the integer part of $y$
and $(y)$ the decimal part of $y$
here $0≤(y)<1$
if $[y]^2=y\times(y)$
find $y=?$
(2) $y\in R,y=[y]+(y)$
the definition is the same as (1)
prove :$[y]+[y+\dfrac {1}{2}]=[2y]$
(3) if $0<y<2^{10}$
using (2) prove :
$[\dfrac {y}{2^1}+\dfrac {1}{2}]+[\dfrac {y}{2^2}+\dfrac {1}{2}]+[\dfrac {y}{2^3}+\dfrac {1}{2}]+-----+[\dfrac {y}{2^{10}}+\dfrac {1}{2}]=[y]$
where we define $[y]$ the integer part of $y$
and $(y)$ the decimal part of $y$
here $0≤(y)<1$
if $[y]^2=y\times(y)$
find $y=?$
(2) $y\in R,y=[y]+(y)$
the definition is the same as (1)
prove :$[y]+[y+\dfrac {1}{2}]=[2y]$
(3) if $0<y<2^{10}$
using (2) prove :
$[\dfrac {y}{2^1}+\dfrac {1}{2}]+[\dfrac {y}{2^2}+\dfrac {1}{2}]+[\dfrac {y}{2^3}+\dfrac {1}{2}]+-----+[\dfrac {y}{2^{10}}+\dfrac {1}{2}]=[y]$
Last edited: