- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I am looking at the following that is related to the existence of the optimal approximation.
$H$ is an euclidean space
$\widetilde{H}$ is a subspace of $H$
We suppose that $dim \widetilde{H}=n$ and $\{x_1,x_2,...,x_n\}$ is the basis of $\widetilde{H}$.
Let $y \in \widetilde{H}$ be the optimal approximation of $x \in H$ from $\widetilde{H}$.
Then $(y,u)=(x,u), \forall u \in \widetilde{H}$.
We take $u=x_i \in \widetilde{H}$, so $(y,x_i)=(x,x_i)$
Since $\{x_1,x_2,...,x_n\}$ is the basis of $\widetilde{H}$, $y$ can be written as followed:
$y=a_1 x_1 + a_2 x_2 +... + a_n x_n$
$\left.\begin{matrix}
(x,x_1)=(y,x_1)=a_1 (x_1,x_1)+a_2 (x_2,x_1)+...+a_n (x_n,x_1)\\
(x,x_2)=(y,x_2)=a_1 (x_1,x_2)+a_2 (x_2,x_2)+...+a_n (x_n,x_2)\\
...\\
(x,x_n)=(y,x_n)=a_1 (x_1,x_n)+a_2 (x_2,x_n)+...+a_n (x_n,x_n)
\end{matrix}\right\}(1)$
So that the optimal approximation exists, I have to be able to write $y$ in an unique way as linear combination of the elements of the basis.
The system $(1)$ has class $n$, since the $\{x_1, ..., x_n \}$ consist the basis of $\widetilde{H}$.
So the system has a unique solution.>Why does the optimal approximation only exists when $y$ can be written in an unique way as linear combination of the elements of the basis?
>What does it mean that the system $(1)$ has class $n$? That it has $n$ equations and $n$ unknown variabes?
I am looking at the following that is related to the existence of the optimal approximation.
$H$ is an euclidean space
$\widetilde{H}$ is a subspace of $H$
We suppose that $dim \widetilde{H}=n$ and $\{x_1,x_2,...,x_n\}$ is the basis of $\widetilde{H}$.
Let $y \in \widetilde{H}$ be the optimal approximation of $x \in H$ from $\widetilde{H}$.
Then $(y,u)=(x,u), \forall u \in \widetilde{H}$.
We take $u=x_i \in \widetilde{H}$, so $(y,x_i)=(x,x_i)$
Since $\{x_1,x_2,...,x_n\}$ is the basis of $\widetilde{H}$, $y$ can be written as followed:
$y=a_1 x_1 + a_2 x_2 +... + a_n x_n$
$\left.\begin{matrix}
(x,x_1)=(y,x_1)=a_1 (x_1,x_1)+a_2 (x_2,x_1)+...+a_n (x_n,x_1)\\
(x,x_2)=(y,x_2)=a_1 (x_1,x_2)+a_2 (x_2,x_2)+...+a_n (x_n,x_2)\\
...\\
(x,x_n)=(y,x_n)=a_1 (x_1,x_n)+a_2 (x_2,x_n)+...+a_n (x_n,x_n)
\end{matrix}\right\}(1)$
So that the optimal approximation exists, I have to be able to write $y$ in an unique way as linear combination of the elements of the basis.
The system $(1)$ has class $n$, since the $\{x_1, ..., x_n \}$ consist the basis of $\widetilde{H}$.
So the system has a unique solution.>Why does the optimal approximation only exists when $y$ can be written in an unique way as linear combination of the elements of the basis?
>What does it mean that the system $(1)$ has class $n$? That it has $n$ equations and $n$ unknown variabes?