- #1
motherlovebone
- 11
- 0
I have been stumped on these problems for about a half an hour now, and I need some big help on them!
Problem 1:
"A sound wave traveling at 343 m/s is emitted by the foghorn of a tugboat. An echo is heard 2.60 s later. How far away is the reflecting object?"
I guessed that 2.60 s was the period, so I found the reciprocal to get the frequency. Once I did that, I put the speed of sound in for v in the equation v=frequency x wavelength. My answer, 891.8 m, sounds preposterous however.
Problem 2:
"The notes produced by a violin range in frequency from approximately 196 Hz to 2637 Hz. Find the possible range of wavelengths produced by the instrument when the speed of sound is 340 m/s."
For this one, would I use v=frequency x wavelength? I did 340 divided by 196, which was 1.735, then 340 divided by 2637, which was 0.129. So would the range of wavelengths be 0.129 to 1.735?
Problem 1:
"A sound wave traveling at 343 m/s is emitted by the foghorn of a tugboat. An echo is heard 2.60 s later. How far away is the reflecting object?"
I guessed that 2.60 s was the period, so I found the reciprocal to get the frequency. Once I did that, I put the speed of sound in for v in the equation v=frequency x wavelength. My answer, 891.8 m, sounds preposterous however.
Problem 2:
"The notes produced by a violin range in frequency from approximately 196 Hz to 2637 Hz. Find the possible range of wavelengths produced by the instrument when the speed of sound is 340 m/s."
For this one, would I use v=frequency x wavelength? I did 340 divided by 196, which was 1.735, then 340 divided by 2637, which was 0.129. So would the range of wavelengths be 0.129 to 1.735?
Last edited: