- #1
bugatti79
- 794
- 1
Homework Statement
Prove that the space l_\infty (R) of bounded sequences with the sup norm (ie x=(x_n) in l_\infty (R) )is not a inner product space.
The Attempt at a Solution
Using definition of parallelogram ||x+y||^2+||x-y||^2=2(||x||^2+||y||^2) (1)
Consider x_n=1^-n and y_n=4-1/n then
||x||_\infty=sup|x_n| = 1 where n=1 and |y||_\infty=sup|y_n|=4 where n=\infty
||x+y||_\infty=|1+4|=5 where I chose n=1 for x_n and n=\infty for y_n so that we get the maximum value.
||x-y||_\infty = |0-4|=4 where I chose n=\infty for x_n and n=1 for y_n to get a maximum
||x+y||^2_\infty+||x-y||^2_\infty=41
THis is not equal to the RHS 2(||x||^2+||y||^2)= 34
implies the space l_\infty(R) is not an inner product space..?