Space Technology/Exploration Professionals: Who Are They?

  • Thread starter thinkies
  • Start date
  • Tags
    Job
In summary: I'm not sure how many people there are working at JPL, but it's definitely not a small operation by any stretch. They're constantly developing new technology andlaunching new spacecraft.
  • #1
thinkies
249
0
I'm curious about space technology/space exploration. Can someone tell me what you call those people working in this field? (example, a guy with astronomy as a specialization works as an astronomer,etc)...

Thanks :smile:
 
Physics news on Phys.org
  • #3
Well, who are the guys that builds satellites, spacecraft and all space technology? Astronomers? Engineers?

Also, what do they do exactly? (Work environment,etc)

Thanks.

P.S.: ********Do astronomers collaborate in such type of works?*********
 
  • #4
Yes, astronomers/astrophysicists and engineers collaborate extensively when building space technology such as observatories/telescopes/detectors and the means to transport those experiments. Astronomers/astrophysicists know the scientific specifications of the experiments and the scientific objectives they want to achieve with the technology, and the engineers know how to design and build it.

If anyone here has any first-hand experience, I'm sure they can elaborate.
 
  • #5
Space technology is a very vague term.

It depends on whether you're talking about communications satellites and other types of commercial satellites, or (in contrast) scientific instruments such as space telescopes and unmanned exploratory vehicles.

I imagine that the former (the commercial satellites) are primarily handled by industry, and it would seem to me that engineers would be the ones designing and building them.

That having been said, there is a HUGE role for engineering/applied optics in astronomy nowadays. With any scientific space mission, the the overall design and specific design parameters of the spacecraft carrying the suite of instruments is dictated by the science that that spacecraft or orbiting observatory is supposed to carry out. The criteria are often collectively referred to as the science goals or science drivers behind the project. In other words, you cannot design it without having some idea of its intended purpose and what it must be capable of when it is up there in terms of its resolution, wavelength sensitivity, detector type, and data storage and readout requirments.

The point I'm getting at is that it's the astronomers in the first place who dream up these fancy new telescopes and other instruments, and come up with the initial purpose, concept and design, and funding proposals. Astronomers sometimes even get their hands dirty designing and building the hardware and software for that instrumentation. This is especially true of the highly specialized instruments needed to do the science such as spectrometers and polarimeters and specialized detectors. In many cases, these are instruments that nobody has built before. They have been designed with a specific scientific purpose in mind. Whether the astronomers then continue to see things through to the construction and testing phases depends largely on the scale of the project. For example, one of the professors in my department was involved with the Wilkinson Microwave Anisotropy Probe (WMAP). He and his fellow scientists are sort of "experimental" cosmologists. They're used to actually building things that will help answer questions about the universe. That having been said, this was a very LARGE project being run by NASA (who was actually going to be launching it). So at a certain point, all of the various instruments and pieces of the space probe being developed by collaborators at various universities were brought together at NASA and the handful of scientists began working with a whole TEAM of engineers on putting the thing together. He described it as something like 50 people worrying about everything from whether the spacecraft would survive the launch to what its thermal properties were to whether its electronics would behave properly in space and be sufficiently shielded from noise to where the spacecraft was getting its power from etc. These are things that are more peripheral to the scientific aspects of the space probe and are more likely to be the same from one space probe to another. As a result, they can easily be handled by NASA engineers specializing in mechanical vibrations or heat transfer or electronics or power systems or... who have no background in astrophysics.

If it's a small enough project...you might not need external engineering. The MOST satellite, a so-called microsatellite the size of a suitcase was designed and built by a professor within my deparment and his team (he may have had other collaborators at another Canadian university too...but the point is that the project was carried out entirely by astronomers at universities and their students). Then you just have to find somebody to launch it for you. In his case, that was the Canadian Space Agency (CSA) (our counterpart to NASA, I guess). Of course, the CSA doesn't have any launch vehicles or launch facilities, so they in turn asked whoever it is who launches their satellites to launch MOST.

Another example is NASA's JPL (Jet Propulsion Laboratory), which, contrary to the name, seems to be the biggest source of American scientific space missions, including many of the planetary space probes and space telescopes you might have heard of (at least the American ones). Yet, it's in Pasadena California right near the California Institute of Technology, and many astrophysicists from Caltech are the ones who work at JPL and are involved in these scientific space missions.

I read your other thread regarding astrophysicists and their salaries. If you are on the fence regarding whether you want to devote your life to pure science right from your first degree, or whether you'd rather get a degree that some would consider more "pragmatic" such as engineering, then let me give you an example (myself). I was on the fence. I liked physics and astronomy. But I wasn't sure about getting a four-year undergraduate physics degree. Then what? What if it turns out I don't want to be immersed in academia for the rest of my life? So I enrolled in the Engineering Physics program at UBC. I liked the concept of it...the idea that you're getting the background you need to bridge the gap between the latest advances in physics, and technological applications that stem from them. Examples would be nanotechnology, quantum computing, high-temperature superconductivity, semiconductor lasers etc. It's an accredited engineering degree. I know a few universities in Canada offer it. I don't about undergrad programs in the U.S. I should warn you that it's not a walk in the park. It's a LOT of work. For me it essentially amounted to an undegraduate physics degree PLUS an electrical engineering degree (but at the end of it, you only have one degree to show for it...haha!). Now that I'm close to graduating, I've decided that I do indeed want to pursue a graduate degree, most likely in the area of astronomical instrumentation , which is exactly what I have described above. It is the building of highly specialized scientific instruments for astronomical observations. Obviously having engineering skills is a huge help, and gives you an advantage over pure astronomy students who go on to become involved in such projects. But the flip side is that without a knowledge of astronomy and astrophysics, you won't understand the purpose behind these instruments or why they are being developed with certain capabilities. You're solving problems that DON'T already have known solutions...using your knowledge of fundamental principles. This in contrast to conventional engineering, which often involves improving upon or optimizing solutions to already well-understood problems for specific applications. I'm generalizing here. I apologize to all of the many bright engineers working in industry with 30 years of experience and tons of patents who have done pioneering work to advance the frontiers of technology and improve our quality of life. So let me give an example to illustrate what I mean. One example I've come across is the SCUBA-2 detector. It's going to be installed on a ground-based telescope in Hawaii. It's much more complex and unique than the image sensor in your digital camera. That's because it is meant to detect submillimetre wavelength radiation (longer than far infrared, but shorter than microwave or radio). The problem of how to detect this type of radiation in such a way that maximized both sensitivity and resolution hadn't been solved until they developed SCUBA-2, which exploits superconductivity among other things. The solution stems from fundamental physical principles. One of my supervisors was telling me about its design, and how it would be difficult for them to improve upon it. It's about as good as it can be, because the only limitations to its performance now are essentially those that are a result of the laws of physics themselves. He dropped the phrase "the quantum limit" several times during the conversation.

The point is that with my background, I have options. Even after I finish my graduate degree...I don't think I will have slammed any doors shut for myself by focusing on astronomy for that portion of my life. At least, not from examples I've seen and heard about while talking to my professors.

Finally, there are other areas of space techonology that we haven't discussed. I don't think that astronomers are involved AT ALL with rocketry and manned spacecraft . That would seem to me to be the purview of aerospace engineers (not to mention a whole load of other types of engineers). Astronomers work on unmanned scientific missions...for the science. Also, space suits, space habitats, space stations, space propulsion...not really relevant to astronomers. Individually they might be interested in these technologies...but it's not their job. I think that goes without saying.
 
Last edited:
  • #6
Excellent post, Cepheid. :smile:
 
  • #7
@ Cepheid

Thank you so much for that answer! Lots of useful informations!
Well, I recently go interested with space technology/space exploration and I am also as much interested with astronomy (theory)...:S

Is there any degree that can compensate both? I prefer to aim a Ph.D in astronomy but a master's in whatever that space technology/space exploration field would also be better. (Please do not pinpoint my age, I know I'm far from university(I'm only 15!), but I feel like getting at least a very very generic knowledge about these fields will do some good to me)

Thanks! :smile:
 
  • #8
Laura1013 said:
Excellent post, Cepheid. :smile:

Indeed! BTW, thank you for your answer Laura!
 
  • #9
Laura1013 said:
Excellent post, Cepheid. :smile:

Thanks Laura! I've been involved with the dreaded "it's your last semester...time to start making some life decisions" process for the past few months, so all of this has been stewing around in my head. Things are looking up though, I'm happy to say.
 
  • #10
Cepheid, are you involved in a aerospace engineering degree (just curious)?
 
  • #11
And what do you think about my comment #7? :smile:
 
  • #12
thinkies said:
Cepheid, are you involved in a aerospace engineering degree (just curious)?

Nope. I'm in Engineering Physics. I explained the nature of my degree in my original post.

thinkies said:
And what do you think about my comment #7? :smile:

I'm not sure what to tell you, again because space technology and exploration is not very specific. One of the things I explained in my long post is that as an astrophysicist you CAN be involved with the development of technologies that will be in space, if you are working on such a project.
 
  • #13
cepheid said:
an astrophysicist you CAN be involved with the development of technologies that will be in space, if you are working on such a project.

Does that exclude astronomers? :( (Sorry, I'm still having hard time to differentiate astronomers from astrophysicist despite the numerous replies I've received from other members...)
 
  • #14
cepheid said:
I'm not sure what to tell you, again because space technology and exploration is not very specific.

Everything involved with space probes/artificial satellites (satellites that study planets, sun,etc) and maybe those spaceships that will be used to travel onto the moon or eventually to mars,etc. I hope you understand with this what I mean by space technology/space exploration...I'm sure engineers do such stuff, but what do you call those engineers,aerospace engineers? And, again, you sure there's no such course/degree compensating both fields (astronomy and aerospace engineer/or w/e that engineering field may be)...

Thanks! :smile:
 
  • #15
thinkies said:
Everything involved with space probes/artificial satellites (satellites that study planets, sun,etc) and maybe those spaceships that will be used to travel onto the moon or eventually to mars,etc. I hope you understand with this what I mean by space technology/space exploration...I'm sure engineers do such stuff, but what do you call those engineers,aerospace engineers? And, again, you sure there's no such course/degree compensating both fields (astronomy and aerospace engineer/or w/e that engineering field may be)...

Thanks! :smile:

"Space technology" is a huge field and in a given project you will to have many different types of engineers, scientists etc involved. This ranges from mechanical engineers (e.g. structural, thermal management), electronic engineers (for the electrionics), computer scientists, microwave engineers etc.
I am sure there are courses called "space technology" or something similar, but they can at best only give you an overview of all these fields. There is no single education that can cover all these disciplines. Large projects involve hundreds of people, each one contributing with his/hers particular expertise.
 
  • #16
Space technology / space exploration is not just one job. No one person has the training or expertise or intelligence to encompass every aspect of this huge field of endeavor. Starting with getting some vehicle off the ground,
  • Propulsion engineers design the engines needed to lift the vehicle off the ground
  • Chemists and chemical engineers know the details of the reactions used in the engines
  • Structural engineers make sure the fuel tanks, the engines, and the rocket structure can withstand the huge forces
  • Control engineers devise the systems that fire the rockets correctly
  • Guidance engineers devise the systems that tell the controls systems where the vehicle should be heading
  • Navigation engineers devise the systems that tell the guidance system where the vehicle is
  • Software engineers implement the schemes developed by all the specialists named above plus a slew of others
  • Computer and electrical engineers design the vehicle's avionics systems
  • Systems engineers make sure all the vehicle systems work well with each other, even when some parts aren't working.
So far, all we have done is get the launch vehicle off the ground. It has to carry some kind of payload, be that people or unmanned probes. This brings in a whole different cast of characters, ranging from nutritionists to meteorologists to astronomers and astrophysicists.

Space technology is a big business. Engineers and scientists tend to be lousy at the business end of things (not always; but in general its not something we're good at or something we like to do). People are needed who are good at project management, hiring good engineers and scientists, and keeping them happy.
 
  • #17
thinkies said:
Well, who are the guys that builds satellites, spacecraft and all space technology? Astronomers? Engineers?

Also, what do they do exactly? (Work environment,etc)

Thanks.

P.S.: ********Do astronomers collaborate in such type of works?*********
Aerospace, mechanical and electrical engineers design and build satellites, spacecraft and much of space technology, but a variety of physicists are involved as well.

NASA centers such as JPL and Goddard have specialties. Johnson specializes in manned mission, Marshall in launch vehicles, and Kennedy is the principal lauch site, particularly for manned missions.

The big aerospace companies are Lockheed-Martin, Northrop-Grumman, United Technologies and Boeing. United Space Alliance ( http://www.unitedspacealliance.com/ ) is a jointly owned LLC of Boeing and Lockheed.

One can get a good idea of what institutions are involved in observational satellites by reading the Wikipedia article about Hubble Space Telescope.
http://en.wikipedia.org/wiki/Hubble_space_telescope
or the James Webb Space telecsope
http://en.wikipedia.org/wiki/James_Webb_Space_Telescope

Or NASA's Constellation program
http://www.nasa.gov/mission_pages/constellation/main/index.html
 
  • #18
A good place to start is NASA itself. Take a look at this page: http://www.nasajobs.nasa.gov/ .
 
Last edited by a moderator:
  • #19
@Astronuc

So, how tough is a master's degree in aerospace/(astronautical?) engineering? Is it even possible to work for 2 degrees in parallel(master's degree in aerospace/astronautical engineering + Ph.D in astronomy)? :smile: A typical master's degree in aerospace/astronautical engineering will take 6 years? Right? So working for 2 degrees in parallel would mean that I will get my master's in aerospace/astronautical engineering before completing a Ph.D in astronomy?

Thanks :smile:

@ DH

Thanks for the website link.
 
  • #20
Bump.
 
  • #21
Bump, again! (Sorry?) And astronuc, project like James Webb Space telescope and NASA's Constellation program are the stuff in which I am *really* interested. Now, I am distorted between 2 passions, Astronomy(theoretical aspect) and astronautical engineering...
 
Last edited:
  • #22
Ok, is there any possibility in the future in studies (I'm still in high school, just a friendly reminder)for someone who shares a passion for astronomy and aerospace(astronautical)engineering? I would prefer some sort of Ph.D degree in astronomy, for which I share a stronger interest then astronautical engineering. Thus, a master's degree would be great for astronautical engineering. Still, with hard work and extreme dedication, is it possible to obtain 2 Ph.D's. This seems an absolute impossibility and even crazy to imagine...Ah, this really sucks :(.
 
  • #23
And how hard are exactly those 2 fields...:P Seems like I am somewhat overestimating the reality, which differs way more then what I am thinking of these fields..
 
  • #24
Bump! I sure am annoying :smile:...
 
  • #25
How do you think toughness can be objectively and quantitatively judged? It's different for each person and each program, isn't it? And just because something is hard, doesn't mean it's not worth working hard to accomplish.

Your question about working on two very different advanced degrees simultaneously has already been answered in another thread of yours.

Typically, master's degrees in science/engineering will only take two years of full-time study after obtaining a bachelor's (about six years after high school, if the bachelor's takes you four years and you begin the master's program immediately after undergrad).

If you have a stronger interest in astronomy than engineering, than go for the astronomy degrees. But really, it's unrealistic to know where your interest most strongly lies before taking basic undergraduate classes in these fields.
 
  • #26
Thanks for the response Laura. Since you're telling me that undergraduate classes really helps determine the particular field, is it possible to choose courses(undergrad) for 2 fields, and in the end, decide which one was better? I often read science articles and stuff like Orion program and other spacecraft stuff/technology and it really really fascinates me. In fact, I take back what I said up there. I 'kinda' like both. I love the 'practical' aspect in astronautical engineering and I love the theoretical part in astronomy. My main concern is that I want to be an astronomer in the future, but I also love 'manipulating' things, hence the reason why I like astronautical engineering. Since I would like be involved in 'big' projects later(if I one day graduate in astronautical engineering), I was thinking that Ph.D is what may lead me to strong positions in these type of works. I am slightly unsure for a master's degree...Still, the possibility does exist to study both of these fields(at a Ph.D level), right?

Thanks once again :smile:!
 
Last edited:
  • #27
Sorry if my question for working on 2 degrees sounds repetitive but other answers didn't really clarify some stuff...
 
  • #28
It is possible to work to gain two bachelor's degrees at the same time. This is called dual-majoring. In many cases, it will take an extra year past norm to graduate with both bachelor's degrees. So, yes, you can get a B.S. in aerospace engineering and a B.S. in astronomy at the same time.

If you remember from the other thread, it's extremely unlikely that you'll be able to work on two advanced degrees in two different fields at the same time. It is possible to get two Ph.D.s, but you will most likely have to get one before the other. Also, you'll need a sufficient undergraduate background in both fields to gain acceptance into the graduate programs. You're looking at a decade or more in graduate school alone. Will obtaining two doctoral degrees significantly help your career? Is that kind if time investment worth it?
 
  • #29
So, is it reasonable to simply earn a master's in astronautical engineer and pursue a Ph.D in astronomy. Will that lead me into good positions (for astronautical engineering jobs)?

Thanks.
 
  • #30
And, that won't take a lot of time, right? I know someone who directly got into a Ph.D program after his bachelor...Although he is a brilliant student.

Obviously I am no longer thinking of doing a Ph.D in 2 fields, it really seems to be 'outrageous'.
Lastly,I am sorry if am disturbing you with all those questions.
 
Last edited:
  • #31
Also,how does an astronomy Ph.D degree supplement a master's degree in astronautical engineering? I was just reading an article regarding the phoenix program(mars and all that stuff)and it grew my fascination for astronautical engineering even more (WoW?)^.^.
 
  • #32
Here it goes, blame it on my curiosity/excitement for bumping this thread again.

What are the advantages with an M.Eng. degree in astronautical engineering?Is a M.A.Sc degree better?Does the M.A.Sc degree leads to better positions?

Also, is it true that Ph.D simply consist of research, are there any courses that are thought? (Depending on the specialization, right?) So that would mean if I am more of a practical guy in this field, I can simply obtain a M.A.Sc degree and get into, let's say, Lockheed Martin and be part of some programs regarding building a spacecraft or satellites,etc, right?
 
Last edited:
  • #33
*:smile:.*
 
  • #34
MASc is a research oriented degree where you typically do less coursework and there is a thesis component where you do some research and its more of a preparation to do Phd studies. Whereas MEng degrees are more coursework based and usually with a practical project of some kind. Both degress still allow you to do Phd studies or compete for a high end job. The only distinction between the two is what is involved in the curriculum between them. Incidentally, the MASc usually has better funding opportunities while you will most likely pay out of pocket for an MEng.
 
  • #35
Thanks makethings.
 
Back
Top