Special relativity - scattering angle

Click For Summary
The discussion revolves around calculating the maximum scattering angle of a particle with mass m1 colliding with a stationary particle of mass m2 (where m2 < m1) at relativistic speeds. The participant sets up the problem using 4-momenta and conservation laws, deriving an expression for cos(θ) related to the energies and masses involved. They encounter difficulties in solving the derivative of cos(θ) and express uncertainty about their calculations. Ultimately, they arrive at a plausible result for the maximum angle, cos(θ_max) = √(1 - m2²/m1²), which is confirmed as correct and aligns with non-relativistic results, indicating the independence from the incoming particle's speed. The conversation emphasizes the importance of careful setup and verification in complex relativistic problems.
Aleolomorfo
Messages
70
Reaction score
4

Homework Statement


Finding the maximum scattering angle of a particle whose mass in ##m_1## which hits with relativistic velocity ##v## a particle at rest with mass ##m_2<m_1##.

The Attempt at a Solution


I've written the 4-momenta (p before the collision, k after the collision and the z-axis is along the direction of the incident particle):
$$p_1=(m_1\gamma,0,0,m_1\gamma v)$$
$$p_2=(m_2,0,0,0)$$
$$k_1=(E,0,\sqrt{E^2-m^2_1}\sin{\theta},\sqrt{E^2-m^2_1}\cos{\theta})$$
For ##k_2## the components are not important, it's important that ##k^2_2=m^2_2##
Then I've used the conservation of 4-momentum ##p_1+p_2=k_1+k_2##, then ##k_2=p_1+p_2-k_1##, then ##k^2_2=p^2_1+p^2_2+k^2_1+2p_1p_2-2p_1k_1-2p_2k_1##. After calculations I've found:
$$\cos{\theta}=\frac{m^2_1+m_1m_2\gamma-2E(m_1\gamma+m_2)}{m_1\gamma v\sqrt{E^2-m^2_1}}$$.
Then I've taken the derivative ##\frac{d(\cos{\theta})}{dE}## and put it equal to 0. However, I've found an equation quite difficult to solve and I think it's wrong.
I think the way I set up the problem is not incorrect, but maybe there is a easier way or some trick to reduce calcus.
 
Physics news on Phys.org
Aleolomorfo said:
Then I've used the conservation of 4-momentum ##p_1+p_2=k_1+k_2##, then ##k_2=p_1+p_2-k_1##, then ##k^2_2=p^2_1+p^2_2+k^2_1+2p_1p_2-2p_1k_1-2p_2k_1##. After calculations I've found:
$$\cos{\theta}=\frac{m^2_1+m_1m_2\gamma-2E(m_1\gamma+m_2)}{m_1\gamma v\sqrt{E^2-m^2_1}}$$.
Check the overall sign of the right hand side of the equation for ##\cos \theta## and also check if the factor of 2 in the numerator is correct.

Then I've taken the derivative ##\frac{d(\cos{\theta})}{dE}## and put it equal to 0. However, I've found an equation quite difficult to solve and I think it's wrong.
I think the way I set up the problem is not incorrect, but maybe there is a easier way or some trick to reduce calcus.
With the corrections mentioned above, it will work out if you slog through it. I don't know of a clever trick to reduce the algebra. Maybe someone else can show us a better way.
 
Last edited:
  • Like
Likes Aleolomorfo
TSny said:
Check the overall sign of the right hand side of the equation for ##\cos \theta## and also check if the factor of 2 in the numerator is correct.

With the corrections mentioned above, it will work out if you slog through it. I don't know of a clever trick to reduce the algebra. Maybe someone else can show us a better way.

Thank you for your help. The worst is when you make a mistake at the beginning. My result is ##\cos{\theta_{max}}=\sqrt{1-\frac{m^2_2}{m^2_1}}##, I think it's correct or at least is plausible.
 
Aleolomorfo said:
Thank you for your help. The worst is when you make a mistake at the beginning. My result is ##\cos{\theta_{max}}=\sqrt{1-\frac{m^2_2}{m^2_1}}##, I think it's correct or at least is plausible.
Yes, that's the correct answer. It's even nicer when expressed in terms of ##\sin \theta##. Since the answer is independent of the speed of the incoming particle, the result is the same as the nonrelativistic, Newtonian result.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K