- #1
mlazos
- 49
- 0
we know from the equation of motion that
[tex]\frac{d^2r}{dt^2}=a[/tex]
where a is the acceleration
for the gravity field we have
[tex]a=\frac{GM}{r^2}[/tex]
So we get
[tex]\frac{d^2r}{dt^2}=\frac{GM}{r^2}[/tex]
[tex]\frac{(R1^3-R2^3)}{3}\frac{dr}{dt}=GMt[/tex]
[tex]\frac{dr}{dt}=\frac{3GMt}{R1^3-R2^3}[/tex]
[tex]u=\sqrt{\frac{3GMt}{R1^3-R2^3}}[/tex]
If we integrate one time from R1 to R2 shouldn't we get the speed?
Because from the equation og energy we get a different result
[tex]u=\sqrt{2GM}\sqrt{\frac{R1-R2}{R1*R2}}[/tex]
So where am i wrong?
[tex]\frac{d^2r}{dt^2}=a[/tex]
where a is the acceleration
for the gravity field we have
[tex]a=\frac{GM}{r^2}[/tex]
So we get
[tex]\frac{d^2r}{dt^2}=\frac{GM}{r^2}[/tex]
[tex]\frac{(R1^3-R2^3)}{3}\frac{dr}{dt}=GMt[/tex]
[tex]\frac{dr}{dt}=\frac{3GMt}{R1^3-R2^3}[/tex]
[tex]u=\sqrt{\frac{3GMt}{R1^3-R2^3}}[/tex]
If we integrate one time from R1 to R2 shouldn't we get the speed?
Because from the equation og energy we get a different result
[tex]u=\sqrt{2GM}\sqrt{\frac{R1-R2}{R1*R2}}[/tex]
So where am i wrong?
Last edited: