- #36
PAllen
Science Advisor
- 9,214
- 2,439
harrylin said:Good try to discredit it (and already your second attempt, as it's what discovermagazine discussed) - but untrue according to Physical Review. The "analysis is in 3+1 dimensions and within conventional general relativity."
It provides perhaps the clearest and most up-to-date answer to the question of this thread, and from a quality source.
I'm still reading it.
[edit: it has 28 citations, so there may be a more relevant newer article on this]
Here is its abstract:
"We study the formation of black holes by spherical domain wall collapse as seen by an asymptotic observer, using the functional Schrodinger formalism. To explore what signals such observers will see, we study radiation of a scalar quantum field in the collapsing domain wall background. The total energy flux radiated diverges when backreaction of the radiation on the collapsing wall is ignored, and the domain wall is seen by the asymptotic observer to evaporate by non-thermal ``pre-Hawking radiation'' during the collapse process. Evaporation by pre-Hawking radiation implies that an asymptotic observer can never lose objects down a black hole. Together with the non-thermal nature of the radiation, this may resolve the black hole information loss problem. "
Hawking radiatiion and pre-Hawking radiation are outside of classical GR. I have read enough to see the obvious fact that every aspect of its conclusions is based on quantum corrections to GR. Even the topic: "Information Loss" is a problem that exists only for quantum mechanics + GR. Evaporation is not part of classical GR, and is fundamental to their argument. This paper is not a paper on classical GR at all.