- #1
etotheipi
- Homework Statement
- Derive the speed of sound in an ##\mathrm{\mathbf{isolated}}## and ##\mathrm{\mathbf{homogeneous}}## simple fluid, by considering small first-order adiabatic perturbations to the fluid.
Assume an equation of state ##p = p(\epsilon, S)## where ##\epsilon## is the ##\mathrm{\mathbf{proper \, energy \, density}}:= \mathbf{T}(\mathbf{\vec{u}}, \mathbf{\vec{u}})## of the fluid [with ##\mathbf{\vec{u}}## the 4-velocity of a co-moving observer ##\mathscr{C}##] and ##S:= s/n## is the ##\mathrm{\mathbf{entropy\, per\, baryon}}##.
- Relevant Equations
- Fluid energy equation:$$\partial_t E + \boldsymbol{\nabla} \cdot ([E+p]\mathbf{\vec{V}}) = P_{\text{ext}}$$Relativistic Euler equation:$$\partial_t \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \mathbf{\vec{V}} = - \frac{c^2}{E+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) + \frac{c^2}{E+p} \mathbf{\vec{F}}_{\text{ext}}$$where ##\tilde{\nabla}## denotes the purely spatial gradient operator. Also, ##\mathbf{\vec{V}}## [the "fluid velocity with respect to ##\mathscr{O}##" 4-vector] is defined by the orthogonal decomposition:$$\mathbf{\vec{u}}_{\mathscr{C}} = \gamma \left( \mathbf{\vec{u}}_{\mathscr{O}} + \frac{1}{c} \mathbf{\vec{V}} \right)$$with ##\mathscr{C}## being a co-moving observer and ##\mathscr{O}## a general observer.
Let us consider the co-moving observer ##\mathscr{C}## for whom ##E = \epsilon## and ##\mathbf{\vec{V}} = \mathbf{\vec{0}}##. Doing the perturbation stuff to the first of the relevant equations gives$$\partial_t \delta \epsilon + \boldsymbol{\nabla} \cdot ([\epsilon + p] \delta \mathbf{\vec{V}}) = \delta P_{\text{ext}} = 0$$since ##\delta [(\epsilon + p) \mathbf{\vec{V}}] = (\delta [\epsilon + p]) \mathbf{\vec{0}} + (\epsilon + p) \delta \mathbf{\vec{V}}##. To the second relevant equation the perturbation is similarly$$
\begin{align*}
\partial_t \delta \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}} &= - \delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] + \delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] \\
\end{align*}$$Because the fluid is homogenous, ##\tilde{\nabla} p = 0## and given also that ##\mathbf{\vec{V}} = \mathbf{\vec{0}}##, I think that the first term will reduce to:$$
\begin{align*}
\delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] &= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} \mathbf{\vec{V}} \partial_t \delta p+ \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right) \\
&= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right)
\end{align*}$$whilst since ##\delta \mathbf{\vec{F}}_{\text{ext}} = \mathbf{\vec{0}}##, the second term is$$\delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] = \frac{-c^2}{(\epsilon + p)^2} \mathbf{\vec{F}}_{\text{ext}} \delta (\epsilon + p)$$I'm not really sure how to clean this up. I don't know what ##\boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}}## reduces to, and I don't know how to get rid of the 4-force ##\mathbf{\vec{F}}_{\text{ext}}## and external power density ##P_{\text{ext}}##. Also, given the change is adiabatic I can write down from the equation of state:$$\delta p = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon + \frac{\partial p}{\partial S} \big{|}_{\epsilon} \delta S = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon$$How do I tidy up the perturbation, and then somehow extract a wave equation from that? Thanks!
\begin{align*}
\partial_t \delta \mathbf{\vec{V}} + \boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}} &= - \delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] + \delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] \\
\end{align*}$$Because the fluid is homogenous, ##\tilde{\nabla} p = 0## and given also that ##\mathbf{\vec{V}} = \mathbf{\vec{0}}##, I think that the first term will reduce to:$$
\begin{align*}
\delta \left[\frac{c^2}{\epsilon+p} \left( \tilde{\nabla} p + \frac{1}{c^2} \left( \partial_t p + P_{\text{ext}} \right) \mathbf{\vec{V}} \right) \right] &= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} \mathbf{\vec{V}} \partial_t \delta p+ \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right) \\
&= \frac{c^2}{\epsilon + p} \left( \tilde{\nabla} \delta p + \frac{1}{c^2} (\partial_t p + P_{\text{ext}}) \delta \mathbf{\vec{V}} \right)
\end{align*}$$whilst since ##\delta \mathbf{\vec{F}}_{\text{ext}} = \mathbf{\vec{0}}##, the second term is$$\delta \left[ \frac{c^2}{\epsilon+p} \mathbf{\vec{F}}_{\text{ext}} \right] = \frac{-c^2}{(\epsilon + p)^2} \mathbf{\vec{F}}_{\text{ext}} \delta (\epsilon + p)$$I'm not really sure how to clean this up. I don't know what ##\boldsymbol{\nabla}_{\mathbf{\vec{V}}} \delta \mathbf{\vec{V}}## reduces to, and I don't know how to get rid of the 4-force ##\mathbf{\vec{F}}_{\text{ext}}## and external power density ##P_{\text{ext}}##. Also, given the change is adiabatic I can write down from the equation of state:$$\delta p = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon + \frac{\partial p}{\partial S} \big{|}_{\epsilon} \delta S = \frac{\partial p}{\partial \epsilon} \big{|}_S \delta \epsilon$$How do I tidy up the perturbation, and then somehow extract a wave equation from that? Thanks!
Last edited by a moderator: