- #1
absci2010
- 10
- 0
1. Find the derivatives of the spherical coordinates in terms of df/dx, df/dy, and df/dz.
2. f(x,y,z)
x=rcos[tex]\theta[/tex]sin[tex]\varphi[/tex]
y=rsin[tex]\vartheta[/tex]cos[tex]\varphi[/tex]
z=rcos[tex]\varphi[/tex]
3. The Attempt at a Solution [/b]
I took the derivatives of the three equations and I got:
df/dx=rcos[tex]\theta[/tex]cos[tex]\varphi[/tex](df/d[tex]\theta[/tex])-rsin[tex]\varphi[/tex]sin[tex]\theta[/tex](df/d[tex]\theta[/tex])+cos[tex]\theta[/tex]sin[tex]\varphi[/tex](df/dr)
df/dy=rsin[tex]\theta[/tex]cos[tex]\varphi[/tex](df/d[tex]\varphi[/tex])+rsin[tex]\varphi[/tex]cos[tex]\theta[/tex](df/d[tex]\theta[/tex])+sin[tex]\theta[/tex]sin[tex]\varphi[/tex](df/dr)
df/dz=-rsin[tex]\varphi[/tex](df/d[tex]\varphi[/tex])+cos[tex]\varphi[/tex](df/dr)
I have three questions about this:
1) Am I taking the derivatives correctly?
2) Can my answer have x, y, and z in it, or does it have to be r, [tex]\theta[/tex], and [tex]\varphi[/tex]?
3) I think the next step is just algebra. Is the algebra going to be really messy?
Thanks in advance!
2. f(x,y,z)
x=rcos[tex]\theta[/tex]sin[tex]\varphi[/tex]
y=rsin[tex]\vartheta[/tex]cos[tex]\varphi[/tex]
z=rcos[tex]\varphi[/tex]
3. The Attempt at a Solution [/b]
I took the derivatives of the three equations and I got:
df/dx=rcos[tex]\theta[/tex]cos[tex]\varphi[/tex](df/d[tex]\theta[/tex])-rsin[tex]\varphi[/tex]sin[tex]\theta[/tex](df/d[tex]\theta[/tex])+cos[tex]\theta[/tex]sin[tex]\varphi[/tex](df/dr)
df/dy=rsin[tex]\theta[/tex]cos[tex]\varphi[/tex](df/d[tex]\varphi[/tex])+rsin[tex]\varphi[/tex]cos[tex]\theta[/tex](df/d[tex]\theta[/tex])+sin[tex]\theta[/tex]sin[tex]\varphi[/tex](df/dr)
df/dz=-rsin[tex]\varphi[/tex](df/d[tex]\varphi[/tex])+cos[tex]\varphi[/tex](df/dr)
I have three questions about this:
1) Am I taking the derivatives correctly?
2) Can my answer have x, y, and z in it, or does it have to be r, [tex]\theta[/tex], and [tex]\varphi[/tex]?
3) I think the next step is just algebra. Is the algebra going to be really messy?
Thanks in advance!