- #1
kkz23691
- 47
- 5
I am accustomed to
##x=rcos(\theta)sin(\phi)##
##y=rsin(\theta)sin(\phi)##
##z=rcos(\phi)##
##-\pi<\theta<\pi##, ##-\pi/2 < \phi < \pi/2##
but see some people using these instead
##x=rcos(\theta)cos(\phi)##
##y=rsin(\theta)cos(\phi)##
##z=rsin(\phi)##
##-\pi<\theta<\pi##, ##-\pi/2 < \phi < \pi/2##
Have you seen this before?
The second set seems to be "oblate spheroidal coordinates" (http://en.wikipedia.org/wiki/Oblate_spheroidal_coordinates) in the limit where the oblate spheroid is actually a sphere (the argument of the hyperbolic sin/cos is large enough so that
##asinh(\mu)=acosh(\mu)=r=\mbox{const}##
Does this make sense?
##x=rcos(\theta)sin(\phi)##
##y=rsin(\theta)sin(\phi)##
##z=rcos(\phi)##
##-\pi<\theta<\pi##, ##-\pi/2 < \phi < \pi/2##
but see some people using these instead
##x=rcos(\theta)cos(\phi)##
##y=rsin(\theta)cos(\phi)##
##z=rsin(\phi)##
##-\pi<\theta<\pi##, ##-\pi/2 < \phi < \pi/2##
Have you seen this before?
The second set seems to be "oblate spheroidal coordinates" (http://en.wikipedia.org/wiki/Oblate_spheroidal_coordinates) in the limit where the oblate spheroid is actually a sphere (the argument of the hyperbolic sin/cos is large enough so that
##asinh(\mu)=acosh(\mu)=r=\mbox{const}##
Does this make sense?