- #1
happyparticle
- 456
- 21
- TL;DR Summary
- Spinors and eigenspinors of ##S_z## and ##S_x## for a spin 1/2
Hi,
While studying the spin 1/2, I'm facing some confusions about the spinors and the eigenspinors.
I understand that ##\chi = \begin{bmatrix}a \\ b \end{bmatrix}## is the spinor with ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}## and ##\chi_-= \begin{bmatrix}0 \\ 1 \end{bmatrix}## the eigenspinors.
However, in my book I have ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}, (eigenvalue + \frac{\hbar}{2})## which I'm not sure to understand.
Furthermore, to find the eigenvalue of ##S_x##, Griffith uses ##\begin{bmatrix}-\lambda & \frac{\hbar}{2}\\ \frac{\hbar}{2} & -\lambda \end{bmatrix} = 0##, but I don't see where this expression come from?
Finally, he says that ##\chi = (\frac{a+b}{\sqrt{2}} \chi_+ + \frac{a-b}{\sqrt{2}} \chi_-)##, which I suposse ##\frac{a+b}{\sqrt{2}} = a ## and ##\frac{a-b}{\sqrt{2}} = b##, again I'm not sure how he get those expressions for a and b.
While studying the spin 1/2, I'm facing some confusions about the spinors and the eigenspinors.
I understand that ##\chi = \begin{bmatrix}a \\ b \end{bmatrix}## is the spinor with ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}## and ##\chi_-= \begin{bmatrix}0 \\ 1 \end{bmatrix}## the eigenspinors.
However, in my book I have ##\chi_+ = \begin{bmatrix}1 \\ 0 \end{bmatrix}, (eigenvalue + \frac{\hbar}{2})## which I'm not sure to understand.
Furthermore, to find the eigenvalue of ##S_x##, Griffith uses ##\begin{bmatrix}-\lambda & \frac{\hbar}{2}\\ \frac{\hbar}{2} & -\lambda \end{bmatrix} = 0##, but I don't see where this expression come from?
Finally, he says that ##\chi = (\frac{a+b}{\sqrt{2}} \chi_+ + \frac{a-b}{\sqrt{2}} \chi_-)##, which I suposse ##\frac{a+b}{\sqrt{2}} = a ## and ##\frac{a-b}{\sqrt{2}} = b##, again I'm not sure how he get those expressions for a and b.