Square of orthogonal matrix vanishes

AI Thread Summary
The discussion centers on the kinetic energy expression involving an orthogonal rotation matrix, R, and its implications. It is noted that while R is orthogonal and its square equals the identity matrix, this property does not appear directly in the kinetic energy formula. The invariance of the dot product under rotation is highlighted, demonstrating that the transformation maintains the same value. Participants clarify the differentiation of the transformed coordinates and confirm the equivalence of their equations. The conversation concludes with a successful demonstration of the relationship between the transformed velocity and the original variables.
PhysicsRock
Messages
121
Reaction score
19
Homework Statement
We consider a coordinate transform where ##\vec{x}^\prime(t) = R(t) (\vec{a} + \vec{x}(t))## with a constant ##\vec{a}##.
Write the lagrangian in terms of ##\vec{x}## and ##\dot{\vec{x}}##.
Relevant Equations
Velocity in terms of ##\dot{\vec{x}}## and ##\vec{x}##: ##\dot{\vec{x}}^\prime = R \left[ \dot{\vec{x}} + \vec{\omega} \times (\vec{a} + \vec{x}) \right]##.
Lagrangian function ##L = T - V##.
I found a the answer in a script from a couple years ago. It says the kinetic energy is

$$
T = \frac{1}{2} m (\dot{\vec{x}}^\prime)^2 = \frac{1}{2} m \left[ \dot{\vec{x}} + \vec{\omega} \times (\vec{a} + \vec{x}) \right]^2
$$

However, it doesn't show the rotation matrix ##R##. This would imply that ##R^2 = R \cdot R = I##. ##R## is an orthogonal matrix, but I'm pretty sure that the square of such is not always equal to the identity.

So then how come the matrix doesn't show up in the expression for the kinetic energy?
 
Physics news on Phys.org
PhysicsRock said:
So then how come the matrix doesn't show up in the expression for the kinetic energy?
The dot product ##\vec{z}\cdot\vec{z}## is shorthand for the matrix multiplication ##z^{T}z##, where ##z## is a column vector. So under a rotation by ##R##, $$\vec{z\,}'\equiv\overleftrightarrow{R}\cdot\vec{z}=R\,z\Rightarrow\vec{z}\,'\cdot\vec{z}\,'=\left(z'\right)^{T}z'=z^{T}R^{T}R\,z=z^{T}z=\vec{z}\cdot\vec{z}$$since ##R## is an orthogonal matrix. (This expresses the invariance of the dot-product under rotations.)
 
PhysicsRock said:
Homework Statement: We consider a coordinate transform where ##\vec{x}^\prime(t) = R(t) (\vec{a} + \vec{x}(t))## with a constant ##\vec{a}##.
Write the lagrangian in terms of ##\vec{x}## and ##\dot{\vec{x}}##.
Relevant Equations: Velocity in terms of ##\dot{\vec{x}}## and ##\vec{x}##: ##\dot{\vec{x}}^\prime = R \left[ \dot{\vec{x}} + \vec{\omega} \times (\vec{a} + \vec{x}) \right]##.
Lagrangian function ##L = T - V##.
Diffenciating ##\vec{x}^\prime(t) = R(t) (\vec{a} + \vec{x}(t))## by time, I get
\dot{\vec{x}^\prime(t)} = \dot{R(t)} (\vec{a} + \vec{x}(t))+R(t) \dot{\vec{x}(t)}
. Is it same as your relevant equation ?
 
renormalize said:
The dot product ##\vec{z}\cdot\vec{z}## is shorthand for the matrix multiplication ##z^{T}z##, where ##z## is a column vector. So under a rotation by ##R##, $$\vec{z\,}'\equiv\overleftrightarrow{R}\cdot\vec{z}=R\,z\Rightarrow\vec{z}\,'\cdot\vec{z}\,'=\left(z'\right)^{T}z'=z^{T}R^{T}R\,z=z^{T}z=\vec{z}\cdot\vec{z}$$since ##R## is an orthogonal matrix. (This expresses the invariance of the dot-product under rotations.)
That makes sense. Thank you.
 
anuttarasammyak said:
Diffenciating ##\vec{x}^\prime(t) = R(t) (\vec{a} + \vec{x}(t))## by time, I get
\dot{\vec{x}^\prime(t)} = \dot{R(t)} (\vec{a} + \vec{x}(t))+R(t) \dot{\vec{x}(t)}
. Is it same as your relevant equation ?
Yes. Allow me to demonstrate. We start with your expression and factor out an ##R##. Since it is orthogonal that leads us to

$$
\dot{\vec{x}}^\prime = R \left[ \dot{\vec{x}} + R^T \dot{R} ( \vec{a} + \vec{x} ) \right]
$$

Last semester, we derived that ##(R^T \dot{R})_{ij} = - \epsilon_{ijk} \omega_k##, where ##\omega_k## are the components of angular velocity. Now we plug that in and get

$$
\dot{x}^\prime_{i} = R_{ij} ( \dot{x}_j + (R^T \dot{R})_{jk} (a_k + x_k) )
= R_{ij} ( \dot{x}_j + (-\epsilon_{jkl} \omega_l) (a_k + x_k) )
$$

Recall the definition of the vector product ##(\vec{a} \times \vec{b})_i = \epsilon_{ijk} a_j b_k##. With that we obtain

$$
\dot{\vec{x}}^\prime = R ( \dot{\vec{x}} - (\vec{a} + \vec{x}) \times \vec{\omega} )
$$

Since the vector product is antisymmetric, we can alternatively write

$$
\dot{\vec{x}}^\prime = R ( \dot{\vec{x}} + \vec{\omega} \times (\vec{a} + \vec{x}) )
$$

And we're done.
 
  • Like
Likes anuttarasammyak
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top