- #1
Zahid Iftikhar
- 121
- 24
- TL;DR Summary
- Apparently binding energies for nuclei are not too much high to be unavailable, but still nuclei don't break during chemical reactions.
Hi
I need help from PF scholars to figure out one difficulty in understanding stability of nucleus. Nuclei remain unaffected during chemical reactions taking place even at very high temperatures and pressures. But their binding energy figures are not that high. Such chemical reactions have heat energies much greater than required binding energies to split the nuclei. For example helium has 28.2 MeV binding energy which is too small. Even sunlight can provide this energy.I am confused why helium or similarly other nuclei don't split at thermal energies? Please help.
I need help from PF scholars to figure out one difficulty in understanding stability of nucleus. Nuclei remain unaffected during chemical reactions taking place even at very high temperatures and pressures. But their binding energy figures are not that high. Such chemical reactions have heat energies much greater than required binding energies to split the nuclei. For example helium has 28.2 MeV binding energy which is too small. Even sunlight can provide this energy.I am confused why helium or similarly other nuclei don't split at thermal energies? Please help.