- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Here's this week's problem.
-----
Problem: Let $F$ be a field of characteristic not equal to $2$. State and prove a necessary and sufficient condition on $\alpha, \beta \in F$ so that $F(\sqrt{\alpha})=F(\sqrt{\beta})$. Use this to determine whether $\mathbb{Q}(\sqrt{1-\sqrt{2}})=\mathbb{Q}(i, \sqrt{2}).$
-----
-----
Problem: Let $F$ be a field of characteristic not equal to $2$. State and prove a necessary and sufficient condition on $\alpha, \beta \in F$ so that $F(\sqrt{\alpha})=F(\sqrt{\beta})$. Use this to determine whether $\mathbb{Q}(\sqrt{1-\sqrt{2}})=\mathbb{Q}(i, \sqrt{2}).$
-----