- #1
Philosophaie
- 462
- 0
A stationary Monopole exist at the Origin.
1)##\vec{B} = \frac{g \hat r}{4 \pi r^2}##
2)##\vec{E} = \frac{e \hat r}{4 \pi \epsilon_0 r^2}##
3)## - \nabla \times \vec{E} = \frac{\partial \vec B}{c \partial t} + \frac{4 \pi}{c} \vec{J_m}##
4)##\nabla \times \vec{B} = \frac{\partial \vec E}{c \partial t} + \frac{4 \pi}{c} \vec{J_e}##
##- \nabla \times \vec{E} = 0##
##\frac{\partial B}{c \partial t} = 0##
therefore
##J_m = 0##
Similarly
##J_e = 0##
Is this correct?
1)##\vec{B} = \frac{g \hat r}{4 \pi r^2}##
2)##\vec{E} = \frac{e \hat r}{4 \pi \epsilon_0 r^2}##
3)## - \nabla \times \vec{E} = \frac{\partial \vec B}{c \partial t} + \frac{4 \pi}{c} \vec{J_m}##
4)##\nabla \times \vec{B} = \frac{\partial \vec E}{c \partial t} + \frac{4 \pi}{c} \vec{J_e}##
##- \nabla \times \vec{E} = 0##
##\frac{\partial B}{c \partial t} = 0##
therefore
##J_m = 0##
Similarly
##J_e = 0##
Is this correct?
Last edited: