- #1
happyparticle
- 464
- 21
- Homework Statement
- For which values of c the state ##e^{c \cdot L_z} |2,2,2>## is stationary for the infinite cubic well Hamiltonian.
- Relevant Equations
- ##\psi (r,t) = \sqrt{\frac{8}{l^3}} sin(\frac{2 \pi x}{l}) sin(\frac{2 \pi u}{l}) sin(\frac{2 \pi z}{l}) e^{-iEt/\hbar}##
##E = \frac{6}{m} (\frac{\pi \hbar}{l})^2##
For a state to be stationary it must be time independent.
Naively, I tried to find the values of c where I don't have any time dependency.
##e^{c \cdot L_z} \psi (r,t) = e^{c L_z} \sqrt{\frac{8}{l^3}} sin(\frac{2 \pi x}{l}) sin(\frac{2 \pi u}{l}) sin(\frac{2 \pi z}{l}) e^{-iEt/\hbar}##
##e^{c \cdot L_z -iEt/\hbar} ##
Thus
##c = \frac{L_z - iEt}{\hbar}##
##c = \frac{L_z - i\frac{6}{m} (\frac{\pi \hbar}{l})^2t}{\hbar}##
I'm wondering if this is correct.
Thanks
Naively, I tried to find the values of c where I don't have any time dependency.
##e^{c \cdot L_z} \psi (r,t) = e^{c L_z} \sqrt{\frac{8}{l^3}} sin(\frac{2 \pi x}{l}) sin(\frac{2 \pi u}{l}) sin(\frac{2 \pi z}{l}) e^{-iEt/\hbar}##
##e^{c \cdot L_z -iEt/\hbar} ##
Thus
##c = \frac{L_z - iEt}{\hbar}##
##c = \frac{L_z - i\frac{6}{m} (\frac{\pi \hbar}{l})^2t}{\hbar}##
I'm wondering if this is correct.
Thanks