- #1
shravanaumesh
- 3
- 0
- TL;DR Summary
- A tool contacts new hot workpiece every 10 sec. What are the factors needed in a simulation to check when the tool reaches steady state temperature?
I am simulating a hot forging process in LS-Dyna. A tool is contacting a hot workpiece for 2 sec every 10 sec (--0 sec--contact--2 sec--no contact---10 sec--) in a factory. Since this is a continuous process, the tool should, at some point, attain steady temperature. I have tried to recreate it in LS-Dyna but I get a continuously increasing curve of temperature at the point of contact at end of 10 sec every time. So I want to clarify my basic understanding of this process.
What factors are needed to be considered for steady-state thermal analysis?
Is having only tool and workpiece resulting in only increase of the tool temperature? OR Will adding the other components of the machine help the tool achieve steady-state?
What factors are needed to be considered for steady-state thermal analysis?
Is having only tool and workpiece resulting in only increase of the tool temperature? OR Will adding the other components of the machine help the tool achieve steady-state?