Steward e6 {7r11} Integral substitution

In summary: So the integral is $\displaystyle \frac{\pi}{3} - \sqrt{3}$.In summary, the integral $\displaystyle \int_1^2{\frac{\sqrt{x^2 - 1}}{x}\,\mathrm{d}x}$ can be solved by using the substitution $\displaystyle u = x^2 - 1$ and then using trigonometric substitution to solve the resulting integral. Both approaches result in the answer $\displaystyle \sqrt{3} - \frac{\pi}{3}$.
  • #1
karush
Gold Member
MHB
3,269
5
$\tiny\text{Steward e6 {7r11} } $
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
🏄 🏄 🏄
 
Last edited:
Physics news on Phys.org
  • #2
This is how I would work the problem:

\(\displaystyle I=\int_1^2 \frac{\sqrt{x^2-1}}{x}\,dx=\int_1^2 \sqrt{1-x^{-2}}\,dx\)

Let:

\(\displaystyle x^{-1}=\sin(u)\implies \,dx=-\frac{\cos(u)}{\sin^2(u)}\,du\)

And we now have:

\(\displaystyle I=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot^2(u)\,du=-\left[u+\cot(u)\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}=\frac{\pi}{6}+\sqrt{3}-\frac{\pi}{2}-0=\sqrt{3}-\frac{\pi}{3}\)
 
  • #3
I would have never thought of that..
Cool trick indeed!😃
 
  • #4
karush said:
$\tiny\text{Steward e6 {7r11} } $
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
🏄 🏄 🏄

Your approach is fine, but you need to fiddle with the integrand first.

$\displaystyle \begin{align*} \int_1^2{\frac{\sqrt{x^2 - 1}}{x}\,\mathrm{d}x} &= \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } \end{align*}$

so let $\displaystyle \begin{align*} u = x^2 - 1 \implies \mathrm{d}u = 2\,x\,\mathrm{d}x \end{align*}$ with $\displaystyle \begin{align*} u(1) = 0 \end{align*}$ and $\displaystyle \begin{align*} u(2) = 3 \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } &= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \end{align*}$

Now how might you continue?
 
  • #5
$\displaystyle \begin{align*} \int_1^2{ \frac{2\,x\,\sqrt{x^2 - 1}}{2\,x^2}\,\mathrm{d}x } &= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \end{align*} $

$\begin{align}\displaystyle
u& = \tan^2 \left({w}\right)&
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{t} \\
\end{align}$
Then
$\displaystyle
I= \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) }\,\mathrm{d}u } \\
\implies \frac{1 }{2}\int_0^3
{ \frac{\sqrt{\tan^2 \left({w}\right)}}
{\left( \tan^2 \left({w}\right) + 1 \right) }\,\mathrm{d}w } \\
\implies \frac{1 }{2} \int_0^3 \frac{\tan\left({w}\right)}
{\sec^2 \left({w}\right)}
\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ dw $

Assume ok🐮
 
  • #6
\(\displaystyle u=\tan^2(w),\quad du=2\tan(w)\sec^2(w)\,dw\) (chain rule)

\(\displaystyle \int_0^3\dfrac{\sqrt u}{2(u+1)}\,du=\int_0^{\pi/3}\tan^2(w)\,dw=\int_0^{\pi/3}\sec^2(w)-1\,dw=\left[\tan(w)-w\right]_0^{\pi/3}=\sqrt{3}-\dfrac{\pi}{3}\)
 
Last edited:
  • #7
My approach:

$\displaystyle \begin{align*} \int_0^3{ \frac{\sqrt{u}}{2\,\left( u + 1 \right) } \,\mathrm{d}u } &= \int_0^3{ \frac{\left( \sqrt{u} \right) ^2 }{ \left[ \left( \sqrt{u} \right) ^2 + 1 \right] }\,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u} \end{align*}$

Now let $\displaystyle \begin{align*} v = \sqrt{u} \implies \mathrm{d}v = \frac{1}{2\,\sqrt{u}}\,\mathrm{d}u \end{align*}$ noting that $\displaystyle \begin{align*} v(0) = 0 \end{align*}$ and $\displaystyle \begin{align*} v(3) = \sqrt{3} \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int_0^3{ \frac{\left( \sqrt{u} \right) ^2}{\left[ \left( \sqrt{u} \right) ^2 + 1 \right] } \,\frac{1}{2\,\sqrt{u}}\,\mathrm{d}u } &= \int_0^{\sqrt{3}}{ \frac{v^2}{v^2 + 1}\,\mathrm{d}v } \\ &= \int_0^{\sqrt{3}}{ \left( 1 - \frac{1}{v^2 + 1} \right) \,\mathrm{d}v } \\ &= \left[ v - \arctan{\left( v \right) } \right] _0^{\sqrt{3}} \\ &= \left[ 0 - \arctan{(0)} \right] - \left[ \sqrt{3} - \arctan{ \left( \sqrt{3} \right) } \right] \\ &= \frac{\pi}{3} - \sqrt{3} \end{align*}$
 

FAQ: Steward e6 {7r11} Integral substitution

What is the Steward e6 {7r11} Integral substitution?

The Steward e6 {7r11} Integral substitution is a mathematical technique used to simplify integrals involving algebraic functions. It involves substituting a variable, typically denoted as u, to transform the integral into a simpler form that can be easily solved.

How does the Steward e6 {7r11} Integral substitution work?

The Steward e6 {7r11} Integral substitution works by using the chain rule of differentiation. The substituted variable is chosen in such a way that it cancels out with the remaining terms in the integral, leaving behind a simpler integral that can be easily solved.

When should the Steward e6 {7r11} Integral substitution be used?

The Steward e6 {7r11} Integral substitution is most useful when the integral involves algebraic functions, especially if the integrand contains a product of polynomials or a composition of functions. It can also be used to evaluate definite integrals.

What are the steps involved in using the Steward e6 {7r11} Integral substitution?

The steps for using the Steward e6 {7r11} Integral substitution are as follows:
1. Identify the substituted variable, typically denoted as u.
2. Rewrite the integral in terms of u.
3. Find the differential of u, du.
4. Substitute u and du in the integral.
5. Solve the new integral in terms of u.
6. Finally, substitute back u in the solution to obtain the final answer.

Are there any limitations to using the Steward e6 {7r11} Integral substitution?

Yes, there are some limitations to using the Steward e6 {7r11} Integral substitution. It may not work for all types of integrals, especially those involving trigonometric functions. It also requires a certain level of skill and practice to identify the appropriate substitution variable. In some cases, it may also result in a more complicated integral.

Similar threads

Replies
2
Views
1K
Replies
6
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
3
Views
1K
Back
Top