- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny\text{Steward e6 {7r11} } $
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
$$\displaystyle
I=\int_1^2 {\frac{\sqrt{{x}^{2}-1}}{x} } \ d{x} =
{\sqrt{3}+\frac{1}{3}\pi} $$
Again what substitution was the question but tried..
$$\begin{align}
u& = {x}^{2}-1 &
du&= 2x \ d{t} &
x&=\sqrt{u+1}
\end{align}$$
$$\displaystyle
I=\int_1^2 \frac{\sqrt{u}}{\sqrt{u+1}} \ d{u}$$
$$\begin{align}
u& = \tan^2\left({w}\right) &
du&=\frac{2\sin\left({w}\right)}{\cos^3\left({w}\right)} \ d{w} &
w&=\arctan{\sqrt{u}+\pi}
\end{align}$$
Proceed ?$\tiny\text{from Surf the Nations math study group}$
Last edited: