- #1
goliath11
- 2
- 0
Homework Statement
Note: the bullets in the equations are dot products, the X are cross products
Evaluate: [over curve c][tex]\oint[/tex]( F [tex]\bullet[/tex] dr ) where F = < exp(x^2), x + sin(y^2) , z> and C is the curve formed by the intersection of the cone: z = [tex]\sqrt{(x^2 + y^2)}[/tex] and the cylinder: x^2 + (y-1)^2 = 1 oriented CCW looking down from + z axis
Homework Equations
I'm assuming this is a Stokes' theorem question, so:
[over curve C][tex]\oint[/tex] F [tex]\bullet[/tex] dr = [over surface S][tex]\int[/tex][tex]\int[/tex]( curl(F) [tex]\bullet[/tex] dS)
The Attempt at a Solution
First, the surface looks like it's on the cone, so paramaterizing the cone in polar coordinates:
(S) r(t,r) = < rcost , rsint , r >
now for finding curl(F) i did: gradient X F = <0,0,1>
So according to the equation mentioned above,
[over curve C][tex]\oint[/tex] F [tex]\bullet[/tex] dr = [over surface S][tex]\int[/tex][tex]\int[/tex]( curl(F) [tex]\bullet[/tex] dS)
and: [over surface S][tex]\int[/tex][tex]\int[/tex]( curl(F) [tex]\bullet[/tex] dS) = [over domain D][tex]\int[/tex][tex]\int[/tex] curl(F) [tex]\bullet[/tex] < r(partial derivative with t) X r(partial derivative with r) > dA
so i found curl(F) already, < r(partial with t) X r(partial with r) > = <rcost, rsint, -r> , and dA = rdrdt
the domain is the domain of the parameters, (t,r), so plugging in the cylinder equation i get:
r = 2sint, so: 0 < r < 2sint and 0 < t < pi , and plugging all that in i get:
[tex]\int[/tex][0<t<pi][tex]\int[/tex][0<r<2sint] <0,0,1> [tex]\bullet[/tex] <rcost,rsint,-t> r dr dt
i get this down to (-8/2)[tex]\int[/tex][0 to pi] (sint)^3 dt which is = -32/9.
I know the answer is supposed to = pi , but I have no idea what I'm doing wrong. Any help would be greatly appreciated, thanks for your time!
Last edited: