Stopping a Bullet: Calculate umin and xf

AI Thread Summary
The discussion focuses on calculating the minimum speed of a bullet, ##u_{min}##, required for a block to fall off a surface after a collision, and the distance ##x_f## where the block lands. The equations derived are ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}## for the minimum speed and ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}## for the landing position. The calculations utilize conservation of momentum and Newton's second law to derive the necessary expressions. The results were confirmed by another participant in the discussion. The thread emphasizes the application of physics principles to solve the problem effectively.
ThEmptyTree
Messages
55
Reaction score
15
Homework Statement
A bullet of mass ##m_1## traveling horizontally with speed ##u## hits a block of mass ##m_2## that is originally at rest and becomes embedded in the block. After the collision, the block slides horizontally a distance ##d## on a surface with friction, and then falls off the surface at a height ##h## as shown. The coefficient of kinetic friction between the block and the surface is ##\mu_k##. Assume the collision is nearly instantaneous and all distances are large compared to the size of the block. Neglect air resistance.

(a) What is ##u_{min}##, the minimum speed of the bullet so that the block falls off the surface? Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, d, h## and ##g## for the gravitational constant.

(b) Assume that the initial speed of the bullet ##u## is large enough for the block to fall off the surface. Calculate ##x_f## , the position where the block hits the ground measured from the bottom edge of the surface. Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, u, d, h## and ##g##.
Relevant Equations
Newton's 2nd Law : $$\overrightarrow{F}=m\overrightarrow{a}$$
Conservation of momentum for instantaneous collision: $$\overrightarrow{p_1}=\overrightarrow{p_2}$$
Untitled.png


(a) ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}##

(b) ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}##

Can someone check please?
 
Last edited:
Physics news on Phys.org
ThEmptyTree said:
Homework Statement:: A bullet of mass ##m_1## traveling horizontally with speed u hits a block of mass ##m_2## that is originally at rest and becomes embedded in the block. After the collision, the block slides horizontally a distance ##d## on a surface with friction, and then falls off the surface at a height ##h## as shown. The coefficient of kinetic friction between the block and the surface is ##\mu_k##. Assume the collision is nearly instantaneous and all distances are large compared to the size of the block. Neglect air resistance.

(a) What is ##u_{min}##, the minimum speed of the bullet so that the block falls off the surface? Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, d, h## and ##g## for the gravitational constant.

(b) Assume that the initial speed of the bullet ##u## is large enough for the block to fall off the surface. Calculate ##x_f## , the position where the block hits the ground measured from the bottom edge of the surface. Express your answer in terms of some or all of the following: ##m_1, m_2, \mu_k, u, d, h## and ##g##.
Relevant Equations:: Newton's 2nd Law : $$\overrightarrow{F}=m\overrightarrow{a}$$
Conservation of momentum for instantaneous collision: $$\overrightarrow{p_1}=\overrightarrow{p_2}$$

View attachment 288337

(a) ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}##

(b) ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}##

Can someone check please?
Explain how you arrived at those answers.

Please, show your work.
 
  • Like
Likes Chestermiller
ThEmptyTree said:
(a) ##u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}##

(b) ##x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}##

Can someone check please?
Looks right.
 
@haruspex Thanks for checking.

This is a sketch of what I've done:

(a)
##t=t_1:\text{right before the collision}##
$$\overrightarrow{p_1}=m_1\overrightarrow{u}$$
##t=t_2:\text{right after the collision}##
$$\overrightarrow{p_2}=(m_1+m_2)\overrightarrow{v_2}$$
Conservation of momentum to find ##v_2##:
$$\overrightarrow{p_1}=\overrightarrow{p_2}\Rightarrow v_2=\frac{m_1}{m_1+m_2}u$$
Newton's 2nd law to find acceleration:
$$\overrightarrow{F}=m\overrightarrow{a}\Rightarrow a=-\mu_k g$$
Considering the case when the block stops on the edge:
$$v^2=v_0^2+2a(x-x_0)\Rightarrow 0=v_2^2+2ad\Rightarrow u_{min}=\big(1+\frac{m_2}{m_1}\big)\sqrt{2\mu_k g d}$$

(b)
Applying the same logic to find horizontal component of falling speed and so ##x## as a function of ##t##:
$$v_x=\sqrt{\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d},~x=v_x t$$
Using kinematics to find ##y## as a function of ##t##:
$$y=h-\frac{1}{2}gt^2$$
Eliminating ##t## from both equations:
$$y=h-\frac{g}{2v_x^2}x^2$$
At ##y=0\Rightarrow x=x_f~:##
$$x_f=\sqrt{\frac{2h}{g}\Big(\big(\frac{m_1}{m_1+m_2}u\big)^2-2\mu_k g d\Big)}$$
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top