- #1
Unconscious
- 74
- 12
I will try to ask the question, saving as much calculations as possible, so as not to weigh down those who want to try to help me.
Starting from the general electromagnetic problem in empty space, taken as a domain a volume V delimited by a closed surface S, Elliot (1) shows how the field (i.e. the solution of the problem) at each internal point in V depends only on the sources inside V and from the field values on S:
$$\mathbf{E}(x,y,z)=\frac{1}{4\pi}\int_{V}\left(\frac{\rho}{\epsilon_0}\nabla'\psi-j\omega\psi\frac{\mathbf{J}}{\mu_0^{-1}}\right) \mathrm{d}V+$$
$$+\frac{1}{4\pi}\int _S\left (\mathbf{1}_n\cdot\mathbf{E} \right )\nabla'\psi+\left(\mathbf{1}_n\times\mathbf{E}\right )\times\nabla'\psi-j\omega\psi\left(\mathbf{1}_n\times\mathbf{B}\right )\mathrm{d}S$$
$$\mathbf{B}(x,y,z)=\frac{1}{4\pi}\int_{V}\frac{\mathbf{J}}{\mu_0^{-1}}\times\nabla'\psi \; \mathrm{d}V+$$
$$+\frac{1}{4\pi}\int _S\left (\mathbf{1}_n\cdot\mathbf{B} \right )\nabla'\psi+\left(\mathbf{1}_n\times\mathbf{B}\right )\times\nabla'\psi+\frac{j\omega\psi}{c^2}\left(\mathbf{1}_n\times\mathbf{E}\right )\mathrm{d}S$$where:
1. ##\rho## e ##\mathbf{J}## are the sources, so they are known,
2. ##\psi=\frac{e^{-jkR}}{R}## and ##R=\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}##,
3. ##\nabla'## operates on variables ##x',y',z'##,
4. ##\mathbf{1}_n## is the unit vector perpendicular to the surface S in all its points, inward in V.That said, let's detail this solution when S is a sphere of radius R (large enough to contain all the sources existing in the universe):
$$\mathbf{E}(x,y,z)=\frac{1}{4\pi}\int_{V}\left(\frac{\rho}{\epsilon_0}\nabla'\psi-j\omega\psi\frac{\mathbf{J}}{\mu_0^{-1}}\right) \mathrm{d}V+$$
$$+\frac{1}{4\pi}\int _S \left[ j\omega \left ( -\mathbf{1}_n\times\mathbf{B}+\frac{\mathbf{E}}{c} \right )+ \frac{\mathbf{E}}{R}\right ] \frac{e^{-jkR}}{R}\mathrm{d}S$$$$\mathbf{B}(x,y,z)=\frac{1}{4\pi}\int_{V}\frac{\mathbf{J}}{\mu_0^{-1}}\times\nabla'\psi \; \mathrm{d}V+$$
$$+\frac{1}{4\pi}\int _S \left[ \frac{j\omega}{c^2} \left ( \mathbf{1}_n\times\mathbf{E}+c\mathbf{B} \right )+ \frac{\mathbf{B}}{R}\right ] \frac{e^{-jkR}}{R}\mathrm{d}S$$In this particular case ##-\mathbf{1}_n## is the unit radial vector as in spherical coordinates.
Now, if the field respects the Sommerfeld conditions, so (as a consequence) if by hypothesis:
$$\lim_{R\to\infty} \int_S (...)\mathrm{d}S=\mathbf{0}\quad (*)$$
then, since the volume integrals do not depend on S (I assumed that in the sphere from which we started there were already all the sources inside) and since (*) holds, we can pass to the limit to both members (both for the field E that for H) obtaining:
$$\mathbf{E}(x,y,z)=\frac{1}{4\pi}\int_{V}\left(\frac{\rho}{\epsilon_0}\nabla'\psi-j\omega\psi\frac{\mathbf{J}}{\mu_0^{-1}}\right) \mathrm{d}V$$$$\mathbf{B}(x,y,z)=\frac{1}{4\pi}\int_{V}\frac{\mathbf{J}}{\mu_0^{-1}}\times\nabla'\psi \; \mathrm{d}V$$that is, obtaining that the two surface integrals (the one for E and the one for H) are both null, both for the starting sphere considered, and for any other sphere with a larger radius. Since it applies to an infinity of spheres, then the integrands must be null, that is:
$$\left\{\begin{matrix}
j\omega \left ( -\mathbf{1}_n\times\mathbf{B}+\frac{\mathbf{E}}{c} \right )+ \frac{\mathbf{E}}{R}=\mathbf{0}\\
\frac{j\omega}{c^2} \left ( \mathbf{1}_n\times\mathbf{E}+c\mathbf{B} \right )+ \frac{\mathbf{B}}{R}=\mathbf{0}
\end{matrix}\right.$$
that written in a better way:
$$\left\{\begin{matrix}
\mathbf{1}_n\times\mathbf{B}= \left (\frac{1}{j\omega R}+\frac{1}{c} \right )\mathbf{E}\\
-\mathbf{1}_n\times\mathbf{E}= \left (\frac{c^2}{j\omega R}+c \right )\mathbf{B}\\
\end{matrix}\right.$$
from which I conclude, multiplying the first from the left by
##\mathbf{1}_n\times##:
$$-\mathbf{B}_{\perp}= -\left (\frac{1}{j\omega R}+\frac{1}{c} \right )\left (\frac{c^2}{j\omega R}+c \right )\mathbf{B}\implies \mathbf{B}=\mathbf{0}$$
which cannot be true. Did I make a mistake?
References:
(1) Robert S. Elliot, Antenna theory and Design, Wiley, IEEE Press, 2003, sect. 1.7, p. 17, ..., 21.
Starting from the general electromagnetic problem in empty space, taken as a domain a volume V delimited by a closed surface S, Elliot (1) shows how the field (i.e. the solution of the problem) at each internal point in V depends only on the sources inside V and from the field values on S:
$$\mathbf{E}(x,y,z)=\frac{1}{4\pi}\int_{V}\left(\frac{\rho}{\epsilon_0}\nabla'\psi-j\omega\psi\frac{\mathbf{J}}{\mu_0^{-1}}\right) \mathrm{d}V+$$
$$+\frac{1}{4\pi}\int _S\left (\mathbf{1}_n\cdot\mathbf{E} \right )\nabla'\psi+\left(\mathbf{1}_n\times\mathbf{E}\right )\times\nabla'\psi-j\omega\psi\left(\mathbf{1}_n\times\mathbf{B}\right )\mathrm{d}S$$
$$\mathbf{B}(x,y,z)=\frac{1}{4\pi}\int_{V}\frac{\mathbf{J}}{\mu_0^{-1}}\times\nabla'\psi \; \mathrm{d}V+$$
$$+\frac{1}{4\pi}\int _S\left (\mathbf{1}_n\cdot\mathbf{B} \right )\nabla'\psi+\left(\mathbf{1}_n\times\mathbf{B}\right )\times\nabla'\psi+\frac{j\omega\psi}{c^2}\left(\mathbf{1}_n\times\mathbf{E}\right )\mathrm{d}S$$where:
1. ##\rho## e ##\mathbf{J}## are the sources, so they are known,
2. ##\psi=\frac{e^{-jkR}}{R}## and ##R=\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}##,
3. ##\nabla'## operates on variables ##x',y',z'##,
4. ##\mathbf{1}_n## is the unit vector perpendicular to the surface S in all its points, inward in V.That said, let's detail this solution when S is a sphere of radius R (large enough to contain all the sources existing in the universe):
$$\mathbf{E}(x,y,z)=\frac{1}{4\pi}\int_{V}\left(\frac{\rho}{\epsilon_0}\nabla'\psi-j\omega\psi\frac{\mathbf{J}}{\mu_0^{-1}}\right) \mathrm{d}V+$$
$$+\frac{1}{4\pi}\int _S \left[ j\omega \left ( -\mathbf{1}_n\times\mathbf{B}+\frac{\mathbf{E}}{c} \right )+ \frac{\mathbf{E}}{R}\right ] \frac{e^{-jkR}}{R}\mathrm{d}S$$$$\mathbf{B}(x,y,z)=\frac{1}{4\pi}\int_{V}\frac{\mathbf{J}}{\mu_0^{-1}}\times\nabla'\psi \; \mathrm{d}V+$$
$$+\frac{1}{4\pi}\int _S \left[ \frac{j\omega}{c^2} \left ( \mathbf{1}_n\times\mathbf{E}+c\mathbf{B} \right )+ \frac{\mathbf{B}}{R}\right ] \frac{e^{-jkR}}{R}\mathrm{d}S$$In this particular case ##-\mathbf{1}_n## is the unit radial vector as in spherical coordinates.
Now, if the field respects the Sommerfeld conditions, so (as a consequence) if by hypothesis:
$$\lim_{R\to\infty} \int_S (...)\mathrm{d}S=\mathbf{0}\quad (*)$$
then, since the volume integrals do not depend on S (I assumed that in the sphere from which we started there were already all the sources inside) and since (*) holds, we can pass to the limit to both members (both for the field E that for H) obtaining:
$$\mathbf{E}(x,y,z)=\frac{1}{4\pi}\int_{V}\left(\frac{\rho}{\epsilon_0}\nabla'\psi-j\omega\psi\frac{\mathbf{J}}{\mu_0^{-1}}\right) \mathrm{d}V$$$$\mathbf{B}(x,y,z)=\frac{1}{4\pi}\int_{V}\frac{\mathbf{J}}{\mu_0^{-1}}\times\nabla'\psi \; \mathrm{d}V$$that is, obtaining that the two surface integrals (the one for E and the one for H) are both null, both for the starting sphere considered, and for any other sphere with a larger radius. Since it applies to an infinity of spheres, then the integrands must be null, that is:
$$\left\{\begin{matrix}
j\omega \left ( -\mathbf{1}_n\times\mathbf{B}+\frac{\mathbf{E}}{c} \right )+ \frac{\mathbf{E}}{R}=\mathbf{0}\\
\frac{j\omega}{c^2} \left ( \mathbf{1}_n\times\mathbf{E}+c\mathbf{B} \right )+ \frac{\mathbf{B}}{R}=\mathbf{0}
\end{matrix}\right.$$
that written in a better way:
$$\left\{\begin{matrix}
\mathbf{1}_n\times\mathbf{B}= \left (\frac{1}{j\omega R}+\frac{1}{c} \right )\mathbf{E}\\
-\mathbf{1}_n\times\mathbf{E}= \left (\frac{c^2}{j\omega R}+c \right )\mathbf{B}\\
\end{matrix}\right.$$
from which I conclude, multiplying the first from the left by
##\mathbf{1}_n\times##:
$$-\mathbf{B}_{\perp}= -\left (\frac{1}{j\omega R}+\frac{1}{c} \right )\left (\frac{c^2}{j\omega R}+c \right )\mathbf{B}\implies \mathbf{B}=\mathbf{0}$$
which cannot be true. Did I make a mistake?
References:
(1) Robert S. Elliot, Antenna theory and Design, Wiley, IEEE Press, 2003, sect. 1.7, p. 17, ..., 21.