- #1
Matt atkinson
- 116
- 1
Homework Statement
In Cartesian coordinates ##x##, ##y##, where ##x## is the horizontal and ##y## the vertical coordinate,
the velocity in a small-amplitude standing surface wave on water of depth ##h## is given
by;
$$v_x = v_0 sin(\omega t) cos(kx) cosh[k(y + h)]$$
$$v_y = v_0 sin(\omega t) sin(kx) sinh[k(y + h)]$$
where ##v_0##, ##\omega## and ##k## are constants. Find the equation of streamlines written in the
form ##F(x, y) = const##.
Homework Equations
$$\frac{dx_i}{d\lambda}=v_i (\lambda,t)$$
The Attempt at a Solution
Look being honest I have no idea what to do, I noticed that;
$$\frac{dx}{d\lambda}=v_0 sin(\omega t) cos(kx) cosh[k(y + h)]$$
$$\frac{dy}{d\lambda}=v_0 sin(\omega t) sin(kx) sinh[k(y + h)]$$
I tried doing;
$$\frac{dy}{d\lambda} \frac{d\lambda}{dx}=\frac{1}{tan(kx)tanh[k(y+h)]}$$
I don't believe that is the correct way to do it, I think I am supposed to try and write them as parametric equations but I am not sure how.