- #1
binbagsss
- 1,302
- 11
Homework Statement
(I have dropped the hats on the ##\alpha_{n}^{u}## operators and ##L_{m}##)
##[\alpha_{n}^u, \alpha_m^v]=n\delta_{n+m}\eta^{uv}##
##L_m=\frac{1}{2}\sum\limits_{n=-\infty}^{\infty} : \alpha_{m-n}^u\alpha_{n}^v: \eta_{uv}-\delta_{m,0}##
where : denotes normal-ordered.
Show that : ##[\alpha_{m}^u,L_n]=m\alpha_{m+n}^u##
Homework Equations
see above
The Attempt at a Solution
For a given ##n## we are looking at the following commutator: ##[\alpha_m,\alpha_{n-m}\alpha_m]##
to use commutator relation:
##[a,bc]=-a[b,c]-[a,c]b##
##a= \alpha_m##
##b= \alpha_{n-m}##
##c= \alpha_m ##
##[a,c]=0##
##[b,c]=(n-m)\delta_{n=0}\eta^{uv}## using (1)
##\implies [\alpha_{m}^u,L_n]=\alpha_m^u(m)\eta^{uv} ## which is wrong...
thanks in advance