- #1
fizicksiscool
- 4
- 0
- Homework Statement
- The Equation of motion is: ##m\frac{d\textbf{v}}{dt} = -e(\textbf{E}(\textbf{r} ,t) + \textbf{v} \times \textbf{B}_{ext})##
Where ##\textbf{B}_{ext}## is a constant in the +z direction.
##E = \begin{bmatrix}
E_x \\
E_ y \\
0 \\
\end{bmatrix} =
\begin{bmatrix}
cos(k_{\pm}z - \omega t)\\
\pm sin(k_{\pm}z - \omega t) \\
0 \\
\end{bmatrix}##
The number density of mobile electrons is ##n(r, t) = n_0 + \delta n(r, t)##
There is also an immobile background charge density ## \rho = +en_0##
Assuming that such a wave exits, Show that a possible solution of the equation of motion results in E creating a current j obeying:
##\frac{d\textbf{j}}{dt} = \alpha_{\pm}\textbf{E}##
Find the constants ##\alpha_{\pm}## in terms of ##\omega##, ##\omega_c = \frac{eB_{ext}}{m}##, and ##\omega_p^2 = \frac{n_0e^2}{m\epsilon_0}##
- Relevant Equations
- The Maxwell Equations:
##\nabla \times B = \mu_0 j +\frac{1}{c^2}\frac{\partial E}{\partial t}##
##\nabla \times E = -\frac{\partial B}{\partial t}##
##\nabla \cdot E = \frac{\rho}{\epsilon_0}##
##\nabla \cdot B = 0##
and
##\textbf{j} = -ne\textbf{v}##
First, assuming, ##v \alpha e^{i(k{\pm}z - \omega t)}## I worked with the equation of motion to get:
##-i\omega v_x = -\frac{e}{m}E_x - \omega_c v_y## and ##-i\omega v_y = -\frac{e}{m}E_y + \omega_c v_x##
Solving this system of equations, I end up with:
##v_x = \frac{-e}{m(\omega^2 - \omega_c^2)}(i\omega E_x +\omega_c E_y)## and ##v_x = \frac{-e}{m(\omega^2 - \omega_c^2)}(i\omega E_y -\omega_c E_x)##
Then I plug this into ##j = -nev## and get ##j = \frac{e^2(n_0 + \delta n(r, t))}{m(\omega^2 - \omega_c^2)}\begin{bmatrix}
i\omega E_x + \omega_c E_y\\
i\omega E_y - \omega_c E_x\\
0
\end{bmatrix}
##
And this is where I get stuck. I do not know how to deal with ##\delta n##, and I can't figure out how ##\epsilon_0## gets involved so that I can have ##\omega_p##. I also can't see how the time derivative will end up being just some constant times E, as ##\frac{\partial E_x}{\partial t} \alpha E_y## and ##\frac{\partial E_y}{\partial t} \alpha E_x## so it seems like $\alpha_{\pm}$ should be a tensor and not a constant.
Pushing forward with the time derivative despite this, I get:
##\frac{\partial j}{\partial t} =
\frac{e^2(\frac{\partial \delta n(r, t)}{\partial t}}{m(\omega^2 - \omega_c^2)}\begin{bmatrix}
i\omega E_x + \omega_c E_y\\
i\omega E_y - \omega_c E_x\\
0
\end{bmatrix} +
\frac{e^2(n_0 + \delta n(r, t))}{m(\omega^2 - \omega_c^2)}\begin{bmatrix}
\pm i\omega^2 E_y \mp \omega_c \omega E_x\\
\mp i\omega^2 E_x \pm \omega_c \omega E_y\\
0
\end{bmatrix}
##
Which isn't proportional to E and has no ##\epsilon_0##
##-i\omega v_x = -\frac{e}{m}E_x - \omega_c v_y## and ##-i\omega v_y = -\frac{e}{m}E_y + \omega_c v_x##
Solving this system of equations, I end up with:
##v_x = \frac{-e}{m(\omega^2 - \omega_c^2)}(i\omega E_x +\omega_c E_y)## and ##v_x = \frac{-e}{m(\omega^2 - \omega_c^2)}(i\omega E_y -\omega_c E_x)##
Then I plug this into ##j = -nev## and get ##j = \frac{e^2(n_0 + \delta n(r, t))}{m(\omega^2 - \omega_c^2)}\begin{bmatrix}
i\omega E_x + \omega_c E_y\\
i\omega E_y - \omega_c E_x\\
0
\end{bmatrix}
##
And this is where I get stuck. I do not know how to deal with ##\delta n##, and I can't figure out how ##\epsilon_0## gets involved so that I can have ##\omega_p##. I also can't see how the time derivative will end up being just some constant times E, as ##\frac{\partial E_x}{\partial t} \alpha E_y## and ##\frac{\partial E_y}{\partial t} \alpha E_x## so it seems like $\alpha_{\pm}$ should be a tensor and not a constant.
Pushing forward with the time derivative despite this, I get:
##\frac{\partial j}{\partial t} =
\frac{e^2(\frac{\partial \delta n(r, t)}{\partial t}}{m(\omega^2 - \omega_c^2)}\begin{bmatrix}
i\omega E_x + \omega_c E_y\\
i\omega E_y - \omega_c E_x\\
0
\end{bmatrix} +
\frac{e^2(n_0 + \delta n(r, t))}{m(\omega^2 - \omega_c^2)}\begin{bmatrix}
\pm i\omega^2 E_y \mp \omega_c \omega E_x\\
\mp i\omega^2 E_x \pm \omega_c \omega E_y\\
0
\end{bmatrix}
##
Which isn't proportional to E and has no ##\epsilon_0##