MHB Stuart's question at Yahoo Answers regarding average value of a function

AI Thread Summary
The average value of the function f(x) = cos^10(x)sin(x) on the interval [0, π] is calculated using the formula A = (1/(b-a))∫_a^b f(x)dx. By substituting a = 0, b = π, and applying u-substitution with u = cos(x), the integral simplifies to A = (2/π)∫_0^1 u^10 du. Evaluating the definite integral gives A = (2/(11π))(1 - 0) = 2/(11π). Thus, the average value of the function on the specified interval is 2/(11π).
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find the average value of the function f on the interval [0,π]. (Enter your answer in an exact form.)?

Find the average value of the function f on the interval [0,π]. (Enter your answer in an exact form.)

f(x)=(cos^10 (x))(sin (x))

Here is a link to the question:

Find the average value of the function f on the interval [0,π]. (Enter your answer in an exact form.)? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Stuart,

We are given the following theorem:

Let $f$ be continuous on $[a,b]$. The average value of $f$ on the interval is the number:

$\displaystyle A=\frac{1}{b-a}\int_a^b f(x)\,dx$

So, we identify that for our problem, we have:

$a=0,\,b=\pi,\,f(x)=\cos^{10}(x)\sin(x)$

and so we have:

$\displaystyle A=\frac{1}{\pi-0}\int_0^{\pi} \cos^{10}(x)\sin(x)\,dx$

Now, to evaluate the definite integral, we may choose the $u$-substitution:

$u=\cos(x)\,\therefore\,du=-\sin(x)\,dx$

and we now have:

$\displaystyle A=\frac{2}{\pi}\int_{0}^{1} u^{10}\,du$

Notes:
  • I changed the limits in accordance with the substitution
  • I used the rule $\displaystyle -\int_a^b f(x)\,dx=\int_b^a f(x)\,dx$
  • I used the even function rule, i.e, given an even integrand we may write $\displaystyle \int_{-a}^a f(x)\,dx=2\int_0^a f(x)\,dx$.

Now, we may find the average value:

$\displaystyle A=\frac{2}{11\pi}\left[u^{11} \right]_0^1=\frac{2}{11\pi}\left(1^{11}-0^{11} \right)=\frac{2}{11\pi}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
9
Views
4K
Replies
10
Views
2K
Replies
1
Views
12K
Replies
7
Views
2K
Replies
1
Views
2K
Replies
3
Views
3K
Replies
8
Views
3K
Back
Top